STT-tensorflow/tensorflow/compiler/xla/service/hlo_constant_folding.cc
David Majnemer bf8e40b92f [XLA] Bump the constant folding threshold up
PiperOrigin-RevId: 246083525
2019-04-30 23:13:52 -07:00

160 lines
6.1 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/xla/service/hlo_constant_folding.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "tensorflow/compiler/xla/layout_util.h"
#include "tensorflow/compiler/xla/literal.h"
#include "tensorflow/compiler/xla/service/dfs_hlo_visitor_with_default.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_evaluator.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/hlo_opcode.h"
#include "tensorflow/compiler/xla/service/hlo_query.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/core/lib/core/errors.h"
namespace xla {
// Checks whether instr is or transitively contains an instruction that we
// shouldn't fold.
//
// Specifically, we don't fold kRng or kAfterAll instructions:
//
// - kRng is already marked as side-effecting and so is skipped elsewhere, but
// we check for it here. Even kRng weren't side-effecting and took an
// explicit seed, we *still* wouldn't want to constant-fold it, because the
// evaluator's handling of rng is not guaranteed to be identical to any
// particular backend's rng.
//
// - kAfterAll needs to be skipped because a kAfterAll op with no args can
// currently materialize a token "out of thin air". TODO(b/110532604):
// Remove this check once AfterAll requires at least one operand, in which
// case constant folding will be impossible.
static bool IsOrContainsIllegalInstr(const HloInstruction* instr) {
if (instr->opcode() == HloOpcode::kAfterAll ||
instr->opcode() == HloOpcode::kRng) {
return true;
}
for (const HloComputation* c : instr->called_computations()) {
if (absl::c_any_of(c->instructions(), IsOrContainsIllegalInstr)) {
return true;
}
}
return false;
}
StatusOr<bool> HloConstantFolding::Run(HloModule* module) {
// Limit the constant folding to 0 iterations to skip folding loops. This
// retains the behavior from before while loop support in HloEvaluator and may
// be revised.
auto evaluator = absl::make_unique<HloEvaluator>(/*max_loop_iterations=*/0);
XLA_VLOG_LINES(2,
"HloConstantFolding::Run(), before:\n" + module->ToString());
bool changed = false;
for (auto* computation : module->MakeNonfusionComputations()) {
for (auto instruction : computation->MakeInstructionPostOrder()) {
// Skip dead code.
if (instruction->user_count() == 0 &&
computation->root_instruction() != instruction) {
continue;
}
// Skip instructions with non-constant operands.
if (!hlo_query::AllOperandsAreConstants(*instruction)) {
continue;
}
// Don't fold Constant, Parameter, and Tuple instructions. Tuple
// constants are not directly supported by any backends, hence folding
// Tuple is not useful and would in fact be expanded back into kTuple by
// Algebraic Simplifier.
//
// (We do allow folding subcomputations that contain these instructions.)
if (instruction->opcode() == HloOpcode::kParameter ||
instruction->opcode() == HloOpcode::kConstant ||
instruction->opcode() == HloOpcode::kTuple) {
continue;
}
// Broadcasts dramatically increase the size of constants, which is often
// detrimental to performance and memory capacity, so do not fold
// broadcasts.
if (instruction->opcode() == HloOpcode::kBroadcast ||
instruction->opcode() == HloOpcode::kIota) {
continue;
}
// Check for instructions that we can't fold even if they appear inside of
// a subcomputation (e.g. a kCall).
if (IsOrContainsIllegalInstr(instruction)) {
continue;
}
// Don't constant-fold side-effecting instructions or instructions which
// contain side-effecting instructions.
if (instruction->HasSideEffect()) {
continue;
}
// Don't constant fold unless it's a net positive or the output is small.
if (instruction->shape().IsArray()) {
int64 elements_in_removed_operands = 0;
for (HloInstruction* operand : instruction->operands()) {
if (operand->user_count() == 1 && operand->shape().IsArray()) {
elements_in_removed_operands +=
ShapeUtil::ElementsIn(operand->shape());
}
}
int64 elements_in_constant =
ShapeUtil::ElementsIn(instruction->shape());
static const int64 kMaximumConstantSizeElements = 45 * 1000 * 1000;
if (elements_in_constant > elements_in_removed_operands &&
elements_in_constant > kMaximumConstantSizeElements) {
continue;
}
}
Literal result;
// Currently we skip unimplemented operations.
// TODO(b/35975797): Fold constant computations for more operations.
if (!evaluator->TryEvaluate(instruction, &result)) {
VLOG(2) << "Constant folding failed for instruction: "
<< instruction->ToString();
continue;
}
VLOG(4) << "Constant folded: " << instruction->ToString();
TF_RETURN_IF_ERROR(computation->ReplaceWithNewInstruction(
instruction, HloInstruction::CreateConstant(std::move(result))));
changed = true;
}
}
XLA_VLOG_LINES(2, "HloConstantFolding::Run(), after:\n" + module->ToString());
return changed;
}
} // namespace xla