Tim Shen 5bbf4a1d11 [XLA/GPU] Remove uses of Thunk::hlo_instruction() for profiling.
This CL consists of two steps:
* First, refactor all Thunks to take an ThunkInfo instead of const HloInstruction*. This will benefit future extensions to ThunkInfo as we move away from HloInstruction*.
* Secondly, change the data pipeline from:
    Emitter -> Thunk* -> hlo_instruction() -> profiler(HloInstruction*)
  to:
    Emitter -> Thunk with profile indices

The profile doesn't really depend on HloInstruction*, but just its pointer
identity. Removing the dependency on HloInstruction helps with MLIR migration.

PiperOrigin-RevId: 320687291
Change-Id: I7027d4c032f73ed615e5b520e01f3740781735be
2020-07-10 15:31:01 -07:00

47 lines
1.6 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/xla/service/gpu/tuple_thunk.h"
#include "absl/memory/memory.h"
#include "tensorflow/compiler/xla/service/gpu/hlo_execution_profiler.h"
#include "tensorflow/compiler/xla/util.h"
namespace xla {
namespace gpu {
Status TupleThunk::ExecuteOnStream(const ExecuteParams& params) {
auto& stream = *params.stream;
auto& buffer_allocations = *params.buffer_allocations;
auto n = tuple_element_buffers_.size();
auto tuple_data = absl::make_unique<void*[]>(n);
for (int i = 0; i < n; ++i) {
tuple_data[i] =
buffer_allocations.GetDeviceAddress(tuple_element_buffers_[i]).opaque();
}
auto op_profiler =
params.profiler->MakeScopedInstructionProfiler(profile_index());
SafeH2DMemcpy(se::DeviceMemory<void*>(
buffer_allocations.GetDeviceAddress(dest_buffer_)),
std::move(tuple_data), n, &stream,
params.deferred_host_callbacks);
return Status::OK();
}
} // namespace gpu
} // namespace xla