This CL consists of two steps:
* First, refactor all Thunks to take an ThunkInfo instead of const HloInstruction*. This will benefit future extensions to ThunkInfo as we move away from HloInstruction*.
* Secondly, change the data pipeline from:
Emitter -> Thunk* -> hlo_instruction() -> profiler(HloInstruction*)
to:
Emitter -> Thunk with profile indices
The profile doesn't really depend on HloInstruction*, but just its pointer
identity. Removing the dependency on HloInstruction helps with MLIR migration.
PiperOrigin-RevId: 320687291
Change-Id: I7027d4c032f73ed615e5b520e01f3740781735be
99 lines
3.8 KiB
C++
99 lines
3.8 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#ifndef TENSORFLOW_COMPILER_XLA_SERVICE_GPU_THUNK_EMITTER_H_
|
|
#define TENSORFLOW_COMPILER_XLA_SERVICE_GPU_THUNK_EMITTER_H_
|
|
|
|
#include "tensorflow/compiler/xla/service/buffer_assignment.h"
|
|
#include "tensorflow/compiler/xla/service/gpu/thunk.h"
|
|
#include "tensorflow/compiler/xla/statusor.h"
|
|
#include "tensorflow/compiler/xla/types.h"
|
|
|
|
namespace xla {
|
|
namespace gpu {
|
|
|
|
// Implements handling of GPU execution for HLO operations that are handed off
|
|
// to specialized thunks that do not require code generation. Intended to be
|
|
// mixed into GPU emitters.
|
|
class ThunkEmitter {
|
|
public:
|
|
class EmissionContext {
|
|
public:
|
|
virtual void AddThunkToThunkSequence(std::unique_ptr<Thunk> thunk) = 0;
|
|
virtual StatusOr<BufferAllocation::Slice> MaybeGetAllocationSlice(
|
|
const HloInstruction& hlo, const ShapeIndex& index) const = 0;
|
|
virtual int64 ByteSizeOf(const Shape& shape) const = 0;
|
|
virtual absl::string_view platform_name() const = 0;
|
|
virtual Thunk::ThunkInfo GetThunkInfo(const HloInstruction* hlo) const;
|
|
|
|
virtual ~EmissionContext() = default;
|
|
};
|
|
|
|
explicit ThunkEmitter(EmissionContext* context) : context_(context) {}
|
|
|
|
Status HandleCustomCall(HloInstruction* custom_call);
|
|
Status HandleFft(HloInstruction* fft);
|
|
Status HandleTriangularSolve(HloInstruction* hlo);
|
|
Status HandleInfeed(HloInstruction* xla_infeed);
|
|
Status HandleOutfeed(HloInstruction* outfeed);
|
|
|
|
private:
|
|
EmissionContext* context_;
|
|
|
|
void AddThunkToThunkSequence(std::unique_ptr<Thunk> thunk) {
|
|
return context_->AddThunkToThunkSequence(std::move(thunk));
|
|
}
|
|
|
|
StatusOr<BufferAllocation::Slice> MaybeGetAllocationSlice(
|
|
const HloInstruction& hlo, const ShapeIndex& index) const {
|
|
return context_->MaybeGetAllocationSlice(hlo, index);
|
|
}
|
|
|
|
int64 ByteSizeOf(const Shape& shape) { return context_->ByteSizeOf(shape); }
|
|
|
|
absl::string_view platform_name() const { return context_->platform_name(); }
|
|
|
|
BufferAllocation::Slice GetAllocationSlice(
|
|
const HloInstruction& hlo, const ShapeIndex& index = {}) const {
|
|
return MaybeGetAllocationSlice(hlo, index).ValueOrDie();
|
|
}
|
|
|
|
// Returns a FftThunk that calls cuFFT to implement `inst`.
|
|
std::unique_ptr<Thunk> BuildFftThunk(const HloInstruction* inst);
|
|
|
|
// Returns a CholeskyThunk that calls cuSolver to implement `inst`.
|
|
std::unique_ptr<Thunk> BuildCholeskyThunk(const HloInstruction* inst);
|
|
|
|
// Returns a TriangularSolveThunk that calls cuBlas to implement `inst`.
|
|
std::unique_ptr<Thunk> BuildTriangularSolveThunk(const HloInstruction* inst);
|
|
|
|
// Returns a GemmThunk that calls gemm to implement `inst`. The caller needs
|
|
// to make sure `inst` outlives the lifetime of the returned Thunk object.
|
|
std::unique_ptr<Thunk> BuildGemmThunk(const HloInstruction* inst);
|
|
|
|
// Returns an InfeedThunk that performs a host-to-device memcpy to implement
|
|
// `inst`.
|
|
std::unique_ptr<Thunk> BuildInfeedThunk(const HloInstruction* inst);
|
|
|
|
// Returns an OutfeedThunk that performs a device-to-host memcpy to implement
|
|
// `inst`.
|
|
std::unique_ptr<Thunk> BuildOutfeedThunk(const HloInstruction* inst);
|
|
};
|
|
|
|
} // namespace gpu
|
|
} // namespace xla
|
|
|
|
#endif // TENSORFLOW_COMPILER_XLA_SERVICE_GPU_THUNK_EMITTER_H_
|