Tim Shen 5bbf4a1d11 [XLA/GPU] Remove uses of Thunk::hlo_instruction() for profiling.
This CL consists of two steps:
* First, refactor all Thunks to take an ThunkInfo instead of const HloInstruction*. This will benefit future extensions to ThunkInfo as we move away from HloInstruction*.
* Secondly, change the data pipeline from:
    Emitter -> Thunk* -> hlo_instruction() -> profiler(HloInstruction*)
  to:
    Emitter -> Thunk with profile indices

The profile doesn't really depend on HloInstruction*, but just its pointer
identity. Removing the dependency on HloInstruction helps with MLIR migration.

PiperOrigin-RevId: 320687291
Change-Id: I7027d4c032f73ed615e5b520e01f3740781735be
2020-07-10 15:31:01 -07:00

76 lines
2.8 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_XLA_SERVICE_GPU_CHOLESKY_THUNK_H_
#define TENSORFLOW_COMPILER_XLA_SERVICE_GPU_CHOLESKY_THUNK_H_
#include "absl/types/optional.h"
#include "tensorflow/compiler/xla/service/buffer_assignment.h"
#include "tensorflow/compiler/xla/service/gpu/buffer_allocations.h"
#include "tensorflow/compiler/xla/service/gpu/cusolver_context.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_executable.h"
#include "tensorflow/compiler/xla/service/gpu/hlo_execution_profiler.h"
#include "tensorflow/compiler/xla/service/gpu/thunk.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/platform/stream_executor_no_cuda.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/stream_executor/blas.h"
namespace xla {
namespace gpu {
// This class stores everything that StreamExecutor needs to launch a Cholesky
// decomposition (LAPACK potrf). It is generated by IrEmitter.
//
// Thread-compatible.
class CholeskyThunk : public Thunk {
public:
static StatusOr<int64> ScratchBufferSize(int64 n);
CholeskyThunk(ThunkInfo thunk_info, const CholeskyOptions& options,
BufferAllocation::Slice a_buffer,
BufferAllocation::Slice workspace_buffer,
BufferAllocation::Slice info_buffer, PrimitiveType type,
int64 batch_size, int64 n);
CholeskyThunk(const CholeskyThunk&) = delete;
CholeskyThunk& operator=(const CholeskyThunk&) = delete;
Status ExecuteOnStream(const ExecuteParams& params) override;
private:
se::blas::UpperLower uplo_;
const BufferAllocation::Slice a_buffer_;
const BufferAllocation::Slice workspace_buffer_;
const BufferAllocation::Slice info_buffer_;
const PrimitiveType type_;
const int64 batch_size_;
const int64 a_batch_stride_;
const int64 n_;
tensorflow::mutex mu_;
absl::flat_hash_map<se::Stream*, CusolverContext> contexts_
TF_GUARDED_BY(mu_);
};
} // namespace gpu
} // namespace xla
#endif // TENSORFLOW_COMPILER_XLA_SERVICE_GPU_CHOLESKY_THUNK_H_