Blake Hechtman 116792db45 [XLA:CLIENT] Support all gradients of <= 2 operand einsums
PiperOrigin-RevId: 328171480
Change-Id: I1adbe658c9e3f435d4a42c2627cbbfef297e02f3
2020-08-24 11:06:18 -07:00

284 lines
8.8 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/xla/client/lib/matrix.h"
#include <limits>
#include <map>
#include <string>
#include <vector>
#include "absl/strings/string_view.h"
#include "tensorflow/compiler/xla/client/lib/constants.h"
#include "tensorflow/compiler/xla/client/lib/slicing.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/compiler/xla/status.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/test.h"
#include "tensorflow/compiler/xla/tests/client_library_test_base.h"
#include "tensorflow/compiler/xla/tests/test_macros.h"
#include "tensorflow/compiler/xla/types.h"
namespace xla {
namespace {
class MatrixTest : public ClientLibraryTestBase {
protected:
template <typename T>
void TestMatrixDiagonal();
template <typename T>
void TestMatrixDiagonal4D();
template <typename T>
void TestSetMatrixDiagonal();
template <typename T>
std::map<int, Array2D<T>> k_and_expected() const {
return std::map<int, Array2D<T>>{
{0, {{0, 5, 10}, {12, 17, 22}}},
{1, {{1, 6, 11}, {13, 18, 23}}},
{2, {{2, 7}, {14, 19}}},
{3, {{3}, {15}}},
{4, {{}, {}}},
{-1, {{4, 9}, {16, 21}}},
{-2, {{8}, {20}}},
{-3, {{}, {}}},
{-4, {{}, {}}},
};
}
};
XLA_TEST_F(MatrixTest, Triangle) {
XlaBuilder builder(TestName());
Array3D<int32> input(2, 3, 4);
input.FillIota(0);
XlaOp a;
auto a_data = CreateR3Parameter<int32>(input, 0, "a", &builder, &a);
LowerTriangle(a);
Array3D<int32> expected({{{0, 0, 0, 0}, {4, 5, 0, 0}, {8, 9, 10, 0}},
{{12, 0, 0, 0}, {16, 17, 0, 0}, {20, 21, 22, 0}}});
ComputeAndCompareR3<int32>(&builder, expected, {a_data.get()});
}
template <typename T>
void MatrixTest::TestMatrixDiagonal() {
XlaBuilder builder("SetMatrixDiagonal");
Array3D<T> input(2, 3, 4);
input.FillIota(0);
for (const auto& kv : k_and_expected<T>()) {
XlaOp a;
auto a_data = CreateR3Parameter<T>(input, 0, "a", &builder, &a);
GetMatrixDiagonal(a, kv.first);
ComputeAndCompareR2<T>(&builder, kv.second, {a_data.get()});
}
}
template <typename T>
void MatrixTest::TestSetMatrixDiagonal() {
XlaBuilder builder("GetMatrixDiagonal");
Array3D<T> input(2, 3, 4);
input.FillIota(0);
for (const auto& kv : k_and_expected<T>()) {
XlaOp a;
XlaOp b;
auto a_data = CreateR3Parameter<T>(input, 0, "a", &builder, &a);
auto new_diag =
CreateR2Parameter<T>(Array2D<T>{kv.second}, 1, "d", &builder, &b);
GetMatrixDiagonal(SetMatrixDiagonal(a, b + ScalarLike(b, 1), kv.first),
kv.first) -
ScalarLike(b, 1);
ComputeAndCompareR2<T>(&builder, kv.second, {a_data.get(), new_diag.get()});
}
}
XLA_TEST_F(MatrixTest, SetMatrixDiagonal_S32) {
TestSetMatrixDiagonal<int32>();
}
XLA_TEST_F(MatrixTest, SetMatrixDiagonal_S64) {
TestSetMatrixDiagonal<int64>();
}
XLA_TEST_F(MatrixTest, SetMatrixDiagonal_F32) {
TestSetMatrixDiagonal<float>();
}
XLA_TEST_F(MatrixTest, GetMatrixDiagonal_S32) { TestMatrixDiagonal<int32>(); }
XLA_TEST_F(MatrixTest, GetMatrixDiagonal_S64) { TestMatrixDiagonal<int64>(); }
XLA_TEST_F(MatrixTest, GetMatrixDiagonal_F32) { TestMatrixDiagonal<float>(); }
template <typename T>
void MatrixTest::TestMatrixDiagonal4D() {
XlaBuilder builder("GetMatrixDiagonal");
Array4D<T> input(2, 2, 4, 3);
input.FillIota(0);
std::map<int, Array3D<T>> k_and_expected = {
{0, {{{0, 4, 8}, {12, 16, 20}}, {{24, 28, 32}, {36, 40, 44}}}},
{1, {{{1, 5}, {13, 17}}, {{25, 29}, {37, 41}}}},
{2, {{{2}, {14}}, {{26}, {38}}}},
{3, {{{}, {}}, {{}, {}}}},
{4, {{{}, {}}, {{}, {}}}},
{-1, {{{3, 7, 11}, {15, 19, 23}}, {{27, 31, 35}, {39, 43, 47}}}},
{-2, {{{6, 10}, {18, 22}}, {{30, 34}, {42, 46}}}},
{-3, {{{9}, {21}}, {{33}, {45}}}},
{-4, {{{}, {}}, {{}, {}}}},
};
for (const auto& kv : k_and_expected) {
XlaOp a;
auto a_data = CreateR4Parameter<T>(input, 0, "a", &builder, &a);
GetMatrixDiagonal(a, kv.first);
ComputeAndCompareR3<T>(&builder, kv.second, {a_data.get()});
}
}
XLA_TEST_F(MatrixTest, GetMatrixDiagonal4D_S32) {
TestMatrixDiagonal4D<int32>();
}
XLA_TEST_F(MatrixTest, GetMatrixDiagonal4D_S64) {
TestMatrixDiagonal4D<int64>();
}
XLA_TEST_F(MatrixTest, GetMatrixDiagonal4D_F32) {
TestMatrixDiagonal4D<float>();
}
Array3D<float> BatchedAValsFull() {
return {{
{2, 0, 1, 2},
{3, 6, 0, 1},
{4, 7, 9, 0},
{5, 8, 10, 11},
},
{
{16, 24, 8, 12},
{24, 61, 82, 48},
{8, 82, 456, 106},
{12, 48, 106, 62},
}};
}
XLA_TEST_F(MatrixTest, RowBatchDot) {
XlaBuilder builder(TestName());
int n = 4;
XlaOp a, row, index;
auto a_data =
CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a);
auto row_data = CreateR3Parameter<float>({{{9, 1, 0, 0}}, {{2, 4, 0, 0}}}, 1,
"row", &builder, &row);
// Select {{3, 6, 0, 1}, {24, 61, 82, 48}} out of BatchedAValsFull().
auto index_data = CreateR0Parameter<int>(1, 2, "index", &builder, &index);
auto l_index = DynamicSliceInMinorDims(
a, {index, ConstantR0<int32>(&builder, 0)}, {1, n});
BatchDot(l_index, TransposeInMinorDims(row));
ComputeAndCompareR3<float>(&builder, {{{33}}, {{292}}},
{a_data.get(), row_data.get(), index_data.get()});
}
XLA_TEST_F(MatrixTest, Einsum) {
XlaBuilder builder(TestName());
int n = 4;
XlaOp a, row, index;
auto a_data =
CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a);
auto row_data = CreateR3Parameter<float>({{{9, 1, 0, 0}}, {{2, 4, 0, 0}}}, 1,
"row", &builder, &row);
// Select {{3, 6, 0, 1}, {24, 61, 82, 48}} out of BatchedAValsFull().
auto index_data = CreateR0Parameter<int>(1, 2, "index", &builder, &index);
auto l_index = DynamicSliceInMinorDims(
a, {index, ConstantR0<int32>(&builder, 0)}, {1, n});
Einsum(l_index, row, "abc,adc->abd");
ComputeAndCompareR3<float>(&builder, {{{33}}, {{292}}},
{a_data.get(), row_data.get(), index_data.get()});
}
XLA_TEST_F(MatrixTest, ParseEinsumString) {
auto to_vec = [](absl::string_view s) {
std::vector<int64> v;
v.reserve(s.size());
int e = -3;
for (auto c : s) {
v.push_back(c == '.' ? e++ : int64{c});
}
return v;
};
auto to_string = [&](absl::string_view x, absl::string_view y,
absl::string_view o) {
return absl::StrCat(x, ",", y, "->", o);
};
std::vector<std::vector<string>> good_test_cases = {
{"ab", "bc", "ac"},
{"Bab", "Bbc", "Bac"},
{"ab", "cd", "dcba"},
{"abc", "abd", "cbd"},
{"...ab", "...bc", "...ac"},
{"a...bc", "...abd", "cbd..."},
{"...ab", "...bc", "ac"},
{"...b", "...bc", "...c"},
{"...abz", "...bc", "...ac"},
{"...ab", "...bcz", "...ac"},
{"abz", "bc", "ac"},
{"ab", "bcz", "ac"},
{"a", "b", "c"},
{"...a", "...b", "...c"},
{"abb", "bcc", "ac"},
{"ab", "bc", "ad"},
};
for (auto test_case : good_test_cases) {
auto parse_result_or_status =
ParseEinsumString(to_string(test_case[0], test_case[1], test_case[2]),
test_case[0].size(), test_case[1].size());
EXPECT_TRUE(parse_result_or_status.status().ok());
auto parse_result = parse_result_or_status.ValueOrDie();
for (int i = 0; i < 3; ++i) {
EXPECT_EQ(parse_result[i], to_vec(test_case[i]));
}
}
std::vector<string> einsum_strings_that_fail_parsing = {
"", "a", "ab->ba", "ab,bc,cd->ad", "a...b...,bc->a...c",
};
for (auto test_case : einsum_strings_that_fail_parsing) {
auto parse_result_or_status = ParseEinsumString(test_case, 3, 3);
EXPECT_FALSE(parse_result_or_status.status().ok());
}
}
XLA_TEST_F(MatrixTest, NormalizeEinsumString) {
EXPECT_EQ(NormalizeEinsumString("a,b->ab"), "");
EXPECT_EQ(NormalizeEinsumString("ba"), "ba->ab");
EXPECT_EQ(NormalizeEinsumString("ab,dc"), "ab,dc->abcd");
EXPECT_EQ(NormalizeEinsumString("a,b"), "a,b->ab");
EXPECT_EQ(NormalizeEinsumString("...ba,ca..."), "...ba,ca...->...bc");
}
} // namespace
} // namespace xla