STT-tensorflow/tensorflow/compiler/jit/get_compiler_ir.cc
George Karpenkov 38c53e2f59 [TF2XLA] Support must-be-constant resource variables for compilation
Performs an explicit copy at runtime from device to host if needed.

PiperOrigin-RevId: 341491694
Change-Id: If4a6c0c76a1110637a06e96595c6013c8fac17e5
2020-11-09 15:04:58 -08:00

159 lines
6.4 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/jit/get_compiler_ir.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "tensorflow/compiler/jit/compilability_check_util.h"
#include "tensorflow/compiler/jit/defs.h"
#include "tensorflow/compiler/jit/flags.h"
#include "tensorflow/compiler/jit/xla_launch_util.h"
#include "tensorflow/compiler/jit/xla_platform_info.h"
#include "tensorflow/compiler/tf2xla/const_analysis.h"
#include "tensorflow/compiler/xla/service/hlo_graph_dumper.h"
#include "tensorflow/core/common_runtime/eager/tensor_handle.h"
#include "tensorflow/core/common_runtime/function.h"
#include "tensorflow/core/framework/function.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/util/ptr_util.h"
namespace tensorflow {
static xla::StatusOr<xla::LocalExecutable*> GetLocalExecutable(
const XlaCompiler::Options& options,
const XlaCompiler::CompileOptions& compile_options,
const NameAttrList& function, XlaCompilationCache* cache,
absl::Span<XlaCompiler::Argument const> args, const XlaCompiler& compiler) {
const XlaCompiler::CompilationResult* compilation_result = nullptr;
xla::LocalExecutable* executable = nullptr;
TF_RETURN_IF_ERROR(cache->Compile(options, function, args, compile_options,
XlaCompilationCache::CompileMode::kStrict,
&compilation_result, &executable));
return executable;
}
xla::StatusOr<std::string> GetCompilerIr(
IrExportStage stage, ProcessFunctionLibraryRuntime* pflr,
absl::string_view func_name, Device* dev, EagerContext* context,
absl::Span<const TensorHandle* const> inputs_handles) {
NameAttrList function;
function.set_name(std::string{func_name});
FunctionLibraryRuntime* flr = pflr->GetFLR(dev->name());
ResourceMgr* rmgr = dev->resource_manager();
const FunctionBody* fbody = nullptr;
std::vector<int> constant_arg_indices;
std::vector<int> resource_arg_indices;
TF_RETURN_IF_ERROR(GetBodyAndConstantsAndResources(
flr, function, &fbody, &constant_arg_indices, &resource_arg_indices));
MemoryTypeVector input_memory_types =
GetInputMemoryTypes(fbody, constant_arg_indices, resource_arg_indices);
MemoryTypeVector output_memory_types = GetOutputMemoryTypes(fbody);
std::deque<Tensor> inputs_storage;
std::vector<const Tensor*> inputs;
inputs.reserve(inputs_handles.size());
for (int i = 0; i < inputs_handles.size(); i++) {
const TensorHandle* th = inputs_handles[i];
const Tensor* t;
// Handle owns the tensor.
TF_RETURN_IF_ERROR(th->Tensor(&t));
if (absl::c_binary_search(constant_arg_indices, i)) {
// Need to make sure it's on the host.
inputs_storage.emplace_back(t->dtype(), t->shape());
TF_RETURN_IF_ERROR(
th->CopyToDevice(*context, /*d=*/nullptr, &inputs_storage.back()));
inputs.push_back(&inputs_storage.back());
} else {
inputs.push_back(t);
}
}
std::vector<VariableInfo> variable_infos;
TF_RETURN_IF_ERROR(GetVariableInfosFromInputs(
rmgr, dev, inputs, resource_arg_indices, &variable_infos));
TF_RETURN_IF_ERROR(LockVariables(absl::MakeSpan(variable_infos)));
XlaPlatformInfo platform_info = XlaPlatformInfoFromDevice(dev);
XlaCompilationCache* cache;
TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<XlaCompilationCache>(
rmgr->default_container(), "xla_cache", &cache,
[&](XlaCompilationCache** cache_write_into) {
return BuildXlaCompilationCache(dev, platform_info, cache_write_into);
}));
core::ScopedUnref cache_ref(cache);
absl::optional<se::TfAllocatorAdapter> tf_allocator_adapter;
XlaCompiler::Options options =
GenerateCompilerOptions(*cache, *flr, dev,
/*stream=*/nullptr, platform_info,
/*has_ref_vars=*/false, &tf_allocator_adapter);
XlaCompiler::CompileOptions compile_options;
compile_options.always_return_tuple = false;
compile_options.alias_resource_update = true;
XlaCompiler compiler(options);
xla::StatusOr<std::vector<XlaCompiler::Argument>> args =
XlaComputationLaunchContext::BuildXlaCompilerArguments(
constant_arg_indices, inputs, variable_infos, dev);
TF_RETURN_IF_ERROR(args.status());
switch (stage) {
case IrExportStage::HLO: {
XlaCompiler::CompilationResult result;
TF_RETURN_IF_ERROR(
compiler.CompileFunction(compile_options, function, *args, &result));
TF_ASSIGN_OR_RETURN(xla::ProgramShape program_shape,
result.computation->GetProgramShape());
xla::HloModuleConfig config(program_shape);
TF_ASSIGN_OR_RETURN(
std::unique_ptr<xla::HloModule> new_module,
xla::HloModule::CreateFromProto(result.computation->proto(), config));
return new_module->ToString();
}
case IrExportStage::OPTIMIZED_HLO: {
xla::StatusOr<xla::LocalExecutable*> executable = GetLocalExecutable(
options, compile_options, function, cache, *args, compiler);
TF_RETURN_IF_ERROR(executable.status());
return (*executable)->executable()->module().ToString();
}
case IrExportStage::OPTIMIZED_HLO_DOT: {
xla::StatusOr<xla::LocalExecutable*> executable = GetLocalExecutable(
options, compile_options, function, cache, *args, compiler);
TF_RETURN_IF_ERROR(executable.status());
xla::StatusOr<std::string> graph = xla::RenderGraph(
*(*executable)->executable()->module().entry_computation(),
"Visualization",
/*debug_options=*/{}, xla::RenderedGraphFormat::kDot,
/*hlo_execution_profile=*/nullptr,
/*hlo_render_options=*/{});
TF_RETURN_IF_ERROR(graph.status());
return *graph;
}
}
}
} // namespace tensorflow