Remove <vector> include as per PR review and discussion with @petewarden Remove profiler ScopeLabel as per discussion with @petewarden
195 lines
8.4 KiB
C++
195 lines
8.4 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_
|
|
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_
|
|
|
|
#include <algorithm>
|
|
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
|
|
namespace tflite {
|
|
|
|
namespace reference_ops {
|
|
|
|
// Element-wise div that can often be used for inner loop of broadcast Div as
|
|
// well as the non-broadcast Div.
|
|
inline void DivElementwise(int size, const ArithmeticParams& params,
|
|
const uint8* input1_data, const uint8* input2_data,
|
|
uint8* output_data) {
|
|
TFLITE_DCHECK_GT(params.input1_offset, -256);
|
|
TFLITE_DCHECK_LT(params.input1_offset, 256);
|
|
TFLITE_DCHECK_GT(params.input2_offset, -256);
|
|
TFLITE_DCHECK_LT(params.input2_offset, 256);
|
|
TFLITE_DCHECK_GT(params.output_offset, -256);
|
|
TFLITE_DCHECK_LT(params.output_offset, 256);
|
|
|
|
for (int i = 0; i < size; ++i) {
|
|
const int32 input1_val = params.input1_offset + input1_data[i];
|
|
const int32 input2_val = params.input2_offset + input2_data[i];
|
|
TFLITE_DCHECK_NE(input2_val, 0);
|
|
int recip_shift;
|
|
const int32 input2_inv =
|
|
(input2_val > 0) ? GetReciprocal(input2_val, 31, &recip_shift)
|
|
: -GetReciprocal(-input2_val, 31, &recip_shift);
|
|
const int headroom = CountLeadingSignBits(input1_val);
|
|
const int32 unscaled_quotient = MultiplyByQuantizedMultiplierGreaterThanOne(
|
|
input1_val, input2_inv, headroom);
|
|
const int total_shift = params.output_shift - recip_shift - headroom;
|
|
const int32 unclamped_result =
|
|
params.output_offset +
|
|
MultiplyByQuantizedMultiplierSmallerThanOneExp(
|
|
unscaled_quotient, params.output_multiplier, total_shift);
|
|
const int32 clamped_output =
|
|
std::min(params.quantized_activation_max,
|
|
std::max(params.quantized_activation_min, unclamped_result));
|
|
output_data[i] = static_cast<uint8>(clamped_output);
|
|
}
|
|
}
|
|
|
|
inline void Div(const ArithmeticParams& params,
|
|
const RuntimeShape& input1_shape, const uint8* input1_data,
|
|
const RuntimeShape& input2_shape, const uint8* input2_data,
|
|
const RuntimeShape& output_shape, uint8* output_data) {
|
|
TFLITE_DCHECK_LE(params.quantized_activation_min,
|
|
params.quantized_activation_max);
|
|
const int flat_size =
|
|
MatchingElementsSize(input1_shape, input2_shape, output_shape);
|
|
|
|
DivElementwise(flat_size, params, input1_data, input2_data, output_data);
|
|
}
|
|
|
|
template <int N = 5>
|
|
inline void BroadcastDivSlow(const ArithmeticParams& params,
|
|
const RuntimeShape& unextended_input1_shape,
|
|
const uint8* input1_data,
|
|
const RuntimeShape& unextended_input2_shape,
|
|
const uint8* input2_data,
|
|
const RuntimeShape& unextended_output_shape,
|
|
uint8* output_data) {
|
|
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N);
|
|
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N);
|
|
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N);
|
|
|
|
NdArrayDesc<N> desc1;
|
|
NdArrayDesc<N> desc2;
|
|
NdArrayDesc<N> output_desc;
|
|
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
|
|
unextended_input2_shape, &desc1, &desc2);
|
|
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
|
|
&output_desc);
|
|
|
|
TFLITE_DCHECK_GT(params.input1_offset, -256);
|
|
TFLITE_DCHECK_LT(params.input1_offset, 256);
|
|
TFLITE_DCHECK_GT(params.input2_offset, -256);
|
|
TFLITE_DCHECK_LT(params.input2_offset, 256);
|
|
TFLITE_DCHECK_GT(params.output_offset, -256);
|
|
TFLITE_DCHECK_LT(params.output_offset, 256);
|
|
|
|
auto div_func = [&](int indexes[N]) {
|
|
const int32 input1_val =
|
|
params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
|
|
const int32 input2_val =
|
|
params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
|
|
TFLITE_DCHECK_NE(input2_val, 0);
|
|
int recip_shift;
|
|
const int32 input2_inv =
|
|
(input2_val > 0) ? GetReciprocal(input2_val, 31, &recip_shift)
|
|
: -GetReciprocal(-input2_val, 31, &recip_shift);
|
|
const int headroom = CountLeadingSignBits(input1_val);
|
|
const int32 unscaled_quotient = MultiplyByQuantizedMultiplierGreaterThanOne(
|
|
input1_val, input2_inv, headroom);
|
|
const int total_shift = params.output_shift - recip_shift - headroom;
|
|
const int32 unclamped_result =
|
|
params.output_offset +
|
|
MultiplyByQuantizedMultiplierSmallerThanOneExp(
|
|
unscaled_quotient, params.output_multiplier, total_shift);
|
|
const int32 clamped_output =
|
|
std::min(params.quantized_activation_max,
|
|
std::max(params.quantized_activation_min, unclamped_result));
|
|
output_data[SubscriptToIndex(output_desc, indexes)] =
|
|
static_cast<uint8>(clamped_output);
|
|
};
|
|
NDOpsHelper<N>(output_desc, div_func);
|
|
}
|
|
|
|
// TODO(jiawen): We can implement BroadcastDiv on buffers of arbitrary
|
|
// dimensionality if the runtime code does a single loop over one dimension
|
|
// that handles broadcasting as the base case. The code generator would then
|
|
// generate max(D1, D2) nested for loops.
|
|
template <typename T, int N = 5>
|
|
void BroadcastDivSlow(const ArithmeticParams& params,
|
|
const RuntimeShape& unextended_input1_shape,
|
|
const T* input1_data,
|
|
const RuntimeShape& unextended_input2_shape,
|
|
const T* input2_data,
|
|
const RuntimeShape& unextended_output_shape,
|
|
T* output_data) {
|
|
T output_activation_min;
|
|
T output_activation_max;
|
|
GetActivationParams(params, &output_activation_min, &output_activation_max);
|
|
|
|
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N);
|
|
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N);
|
|
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N);
|
|
|
|
NdArrayDesc<N> desc1;
|
|
NdArrayDesc<N> desc2;
|
|
NdArrayDesc<N> output_desc;
|
|
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
|
|
unextended_input2_shape, &desc1, &desc2);
|
|
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
|
|
&output_desc);
|
|
|
|
// In Tensorflow, the dimensions are canonically named (batch_number, row,
|
|
// col, channel), with extents (batches, height, width, depth), with the
|
|
// trailing dimension changing most rapidly (channels has the smallest
|
|
// stride, typically 1 element).
|
|
//
|
|
// In generated C code, we store arrays with the dimensions reversed. The
|
|
// first dimension has smallest stride.
|
|
|
|
auto div_func = [&](int indexes[N]) {
|
|
output_data[SubscriptToIndex(output_desc, indexes)] =
|
|
ActivationFunctionWithMinMax(
|
|
input1_data[SubscriptToIndex(desc1, indexes)] /
|
|
input2_data[SubscriptToIndex(desc2, indexes)],
|
|
output_activation_min, output_activation_max);
|
|
};
|
|
NDOpsHelper<N>(output_desc, div_func);
|
|
}
|
|
|
|
template <typename T>
|
|
inline void Div(const ArithmeticParams& params,
|
|
const RuntimeShape& input1_shape, const T* input1_data,
|
|
const RuntimeShape& input2_shape, const T* input2_data,
|
|
const RuntimeShape& output_shape, T* output_data) {
|
|
T output_activation_min;
|
|
T output_activation_max;
|
|
GetActivationParams(params, &output_activation_min, &output_activation_max);
|
|
|
|
const int flat_size =
|
|
MatchingElementsSize(input1_shape, input2_shape, output_shape);
|
|
for (int i = 0; i < flat_size; ++i) {
|
|
output_data[i] = ActivationFunctionWithMinMax(
|
|
input1_data[i] / input2_data[i], output_activation_min,
|
|
output_activation_max);
|
|
}
|
|
}
|
|
|
|
} // namespace reference_ops
|
|
} // namespace tflite
|
|
|
|
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_
|