STT-tensorflow/tensorflow/python/util/dispatch_test.py
Tomer Kaftan 12b7b9e06d The linalg.LinearOperator* Module APIs do not support top-level dispatching because they are classes w/ methods instead of top-level methods in TF's APIs. But, their class methods call out to APIs that do support dispatching.
This CL updates the convert_to_tensor calls in the `linalg.LinearOperator*` APIs to use the publicly exposed, dispatching `convert_to_tensor_v2_with_dispatch`, which enables the Operators to effectively work with dispatching as the APIs they call out to support dispatching as well.

PiperOrigin-RevId: 324834645
Change-Id: If2e9f17be101e74f8835497d8ca51a0174055053
2020-08-04 10:21:58 -07:00

332 lines
11 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for operator dispatch."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.linalg import linear_operator_diag
from tensorflow.python.ops.proto_ops import decode_proto
from tensorflow.python.platform import googletest
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging
from tensorflow.python.util import deprecation
from tensorflow.python.util import dispatch
from tensorflow.python.util import nest
from tensorflow.python.util.tf_export import get_canonical_name_for_symbol
from tensorflow.python.util.tf_export import tf_export
class CustomTensor(object):
"""A fake composite tensor class, for testing type-based dispatching."""
def __init__(self, tensor, score):
self.tensor = ops.convert_to_tensor(tensor)
self.score = score
@tf_export("test_op")
@dispatch.add_dispatch_support
def test_op(x, y, z):
"""A fake op for testing dispatch of Python ops."""
return x + (2 * y) + (3 * z)
class TensorTracer(object):
"""An object used to trace TensorFlow graphs.
This is an example class that is used to test global op dispatchers. The
global op dispatcher for TensorTracers is defined below.
"""
def __init__(self, name, args=None, kwargs=None):
self.name = name
self.args = args
self.kwargs = kwargs
self.shape = array_ops.ones(shape=(4, 4)).shape
self.dtype = dtypes.float32
def __repr__(self):
if self.args is None and self.kwargs is None:
return self.name
else:
args = [str(x) for x in self.args]
args += sorted(
["{}={}".format(name, x) for (name, x) in self.kwargs.items()])
return "{}({})".format(self.name, ", ".join(args))
@property
def is_tensor_like(self):
return True
@classmethod
def _overload_all_operators(cls): # pylint: disable=invalid-name
"""Register overloads for all operators."""
for operator in ops.Tensor.OVERLOADABLE_OPERATORS:
cls._overload_operator(operator)
@classmethod
def _overload_operator(cls, operator): # pylint: disable=invalid-name
"""Overload an operator with the same overloading as `ops.Tensor`."""
tensor_oper = getattr(ops.Tensor, operator)
# Compatibility with Python 2:
# Python 2 unbound methods have type checks for the first arg,
# so we need to extract the underlying function
tensor_oper = getattr(tensor_oper, "__func__", tensor_oper)
setattr(cls, operator, tensor_oper)
TensorTracer._overload_all_operators() # pylint: disable=protected-access
class TensorTracerOpDispatcher(dispatch.GlobalOpDispatcher):
"""Global op dispatcher for TensorTracer."""
def _flatten_with_slice_flattening(self, x):
flat = []
for val in nest.flatten(x):
if isinstance(val, slice):
flat.extend((val.start, val.stop, val.step))
else:
flat.append(val)
return flat
def handle(self, op, args, kwargs):
# Dispatcher only applies if at least one arg is a TensorTracer.
if not (any(self.is_tensor_tracer_arg(x) for x in args) or
any(self.is_tensor_tracer_arg(x) for x in kwargs.values())):
return self.NOT_SUPPORTED
symbol_name = get_canonical_name_for_symbol(op)
return TensorTracer(symbol_name, args, kwargs)
def is_tensor_tracer_arg(self, value):
return any(isinstance(x, TensorTracer) for x in
self._flatten_with_slice_flattening(value))
@test_util.run_all_in_graph_and_eager_modes
class DispatchTest(test_util.TensorFlowTestCase):
def testAddDispatchForTypes_With_CppOp(self):
original_handlers = gen_math_ops.add._tf_dispatchers[:]
# Override the behavior of gen_math_ops.add.
@dispatch.dispatch_for_types(gen_math_ops.add, CustomTensor)
def custom_add(x, y, name=None): # pylint: disable=unused-variable
return CustomTensor(gen_math_ops.add(x.tensor, y.tensor, name),
(x.score+y.score) / 2.0)
self.assertEqual(len(math_ops.add._tf_dispatchers),
len(original_handlers) + 1)
# Test that we see the overridden behavior when using CustomTensors.
x = CustomTensor([1, 2, 3], 2.0)
y = CustomTensor([7, 8, 2], 0.0)
x_plus_y = gen_math_ops.add(x, y)
self.assertAllEqual(self.evaluate(x_plus_y.tensor), [8, 10, 5])
self.assertNear(x_plus_y.score, 1.0, 0.001)
# Test that we still get the right behavior when using normal Tensors.
a = [1, 2, 3]
b = [4, 5, 6]
a_plus_b = gen_math_ops.add(a, b)
self.assertAllEqual(a_plus_b, [5, 7, 9])
# Test that we still get a TypeError or ValueError if we pass some
# type that's not supported by any dispatcher.
with self.assertRaises((TypeError, ValueError)):
gen_math_ops.add(a, None)
# Clean up
gen_math_ops.add._tf_dispatchers = original_handlers
def testAddDispatchForTypes_With_PythonOp(self):
original_handlers = test_op._tf_dispatchers[:]
@dispatch.dispatch_for_types(test_op, CustomTensor)
def override_for_test_op(x, y, z): # pylint: disable=unused-variable
return CustomTensor(test_op(x.tensor, y.tensor, z.tensor),
(x.score + y.score + z.score) / 3.0)
x = CustomTensor([1, 2, 3], 0.2)
y = CustomTensor([7, 8, 2], 0.4)
z = CustomTensor([0, 1, 2], 0.6)
result = test_op(x, y, z)
self.assertAllEqual(self.evaluate(result.tensor), [15, 21, 13])
self.assertNear(result.score, 0.4, 0.001)
# Clean up
test_op._tf_dispatchers = original_handlers
def testDispatchForTypes_SignatureMismatch(self):
with self.assertRaisesRegex(
AssertionError, "The decorated function's "
"signature must exactly match.*"):
@dispatch.dispatch_for_types(test_op, CustomTensor)
def override_for_test_op(a, b, c): # pylint: disable=unused-variable
return CustomTensor(test_op(a.tensor, b.tensor, c.tensor),
(a.score + b.score + c.score) / 3.0)
def testDispatchForTypes_OpDoesNotSupportDispatch(self):
def some_op(x, y):
return x + y
with self.assertRaisesRegex(AssertionError, "Dispatching not enabled for"):
@dispatch.dispatch_for_types(some_op, CustomTensor)
def override_for_some_op(x, y): # pylint: disable=unused-variable
return x if x.score > 0 else y
@test.mock.patch.object(tf_logging, "warning", autospec=True)
def testInteractionWithDeprecationWarning(self, mock_warning):
@deprecation.deprecated(date=None, instructions="Instructions")
@dispatch.add_dispatch_support
def some_op(x):
return x
some_op(5)
message = mock_warning.call_args[0][0] % mock_warning.call_args[0][1:]
self.assertRegex(
message, r".*some_op \(from __main__\) is deprecated and will be "
"removed in a future version.*")
def testGlobalDispatcher(self):
original_global_dispatchers = dispatch._GLOBAL_DISPATCHERS
try:
TensorTracerOpDispatcher().register()
x = TensorTracer("x")
y = TensorTracer("y")
trace = math_ops.reduce_sum(math_ops.add(math_ops.abs(x), y), axis=3)
self.assertEqual(
str(trace),
"math.reduce_sum(math.add(name=None, x=math.abs(x), y=y), axis=3)")
proto_val = TensorTracer("proto")
trace = decode_proto(proto_val, "message_type", ["field"], ["float32"])
self.assertIn("io.decode_proto(bytes=proto,", str(trace))
finally:
# Clean up.
dispatch._GLOBAL_DISPATCHERS = original_global_dispatchers
def testGlobalDispatcherConvertToTensor(self):
original_global_dispatchers = dispatch._GLOBAL_DISPATCHERS
try:
TensorTracerOpDispatcher().register()
x = TensorTracer("x")
y = TensorTracer("y")
trace = math_ops.add(math_ops.abs(
ops.convert_to_tensor_v2_with_dispatch(x)), y)
self.assertEqual(
str(trace),
"math.add(name=None, x=math.abs(convert_to_tensor(x)), y=y)")
finally:
# Clean up.
dispatch._GLOBAL_DISPATCHERS = original_global_dispatchers
def testGlobalDispatcherGetItem(self):
original_global_dispatchers = dispatch._GLOBAL_DISPATCHERS
try:
TensorTracerOpDispatcher().register()
x = TensorTracer("x")
trace = x[0]
self.assertEqual(
str(trace),
"__operators__.getitem(x, 0)")
x = TensorTracer("x")
y = TensorTracer("y")
trace = x[y]
self.assertEqual(
str(trace),
"__operators__.getitem(x, y)")
x = TensorTracer("x")
y = TensorTracer("y")
trace = x[:y] # pylint: disable=invalid-slice-index
self.assertEqual(
str(trace),
"__operators__.getitem(x, slice(None, y, None))")
x = array_ops.ones(shape=(3, 3))
y = TensorTracer("y")
trace = x[y]
self.assertEqual(
str(trace),
"__operators__.getitem(%s, y)" % x)
trace = x[:y] # pylint: disable=invalid-slice-index
self.assertEqual(
str(trace),
"__operators__.getitem(%s, slice(None, y, None))" % x)
finally:
# Clean up.
dispatch._GLOBAL_DISPATCHERS = original_global_dispatchers
def testGlobalDispatcherLinearOperators(self):
original_global_dispatchers = dispatch._GLOBAL_DISPATCHERS
try:
TensorTracerOpDispatcher().register()
x = TensorTracer("x")
# To grab the eigenvalues the diag operator just calls convert_to_tensor
# (twice) in this case.
trace = linear_operator_diag.LinearOperatorDiag(x).eigvals()
self.assertEqual(
str(trace),
"convert_to_tensor(convert_to_tensor(x, dtype=None, dtype_hint=None, "
"name=diag))")
# The diagonal tensor addition gets traced even though the linear_operator
# API only uses dispatchable ops instead of directly exposing dispatching.
trace = linear_operator_diag.LinearOperatorDiag(x).add_to_tensor(x)
self.assertIn(
"linalg.set_diag(convert_to_tensor(x, name=x), __operators__.add("
"convert_to_tensor(x, dtype=None, dtype_hint=None, name=diag), "
"linalg.diag_part(convert_to_tensor(x, name=x)), "
"name=",
str(trace))
# The dispatch-supporting ops the non-singular check calls out to
# get traced.
trace = linear_operator_diag.LinearOperatorDiag(x).assert_non_singular()
self.assertIn("debugging.assert_less", str(trace))
self.assertIn(
"message=Singular operator: Diagonal contained zero values.",
str(trace))
finally:
# Clean up.
dispatch._GLOBAL_DISPATCHERS = original_global_dispatchers
if __name__ == "__main__":
googletest.main()