STT-tensorflow/tensorflow/python/saved_model/function_serialization.py
Ran Chen b6d58af144 Save FunctionSpec with BareConcreteFunction
ConcreteFunction now supports being called with both structured inputs and flatten inputs, so that it's compatible with tf.function calling semantics.

To support the same semantics for saved ConcreteFunction, we need to save the FunctionSpec.

Note that calling with structured inputs is not yet supported in SavedModel C++ API.

This change also modifies ConcreteFunction.pretty_printed_signature to make it work for loaded functions. The structured_outputs of loaded functions are tensor specs instead of tensors. Ideally it should be tensors as well, but there're already users who depend on
this behavior.

PiperOrigin-RevId: 335946423
Change-Id: I4aecf2aba51459801bd0d42a3343ad1becaef187
2020-10-07 14:25:18 -07:00

177 lines
7.4 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tools for serializing `Function`s."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.core.protobuf import saved_object_graph_pb2
from tensorflow.python.eager import function as defun
from tensorflow.python.framework import func_graph as func_graph_module
from tensorflow.python.saved_model import nested_structure_coder
from tensorflow.python.util import compat
from tensorflow.python.util import nest
def _serialize_function_spec(function_spec, coder):
"""Serialize a FunctionSpec object into its proto representation."""
if function_spec.is_method and not function_spec.fullargspec.args:
raise NotImplementedError(
"Missing support to serialize a method function without a named "
"'self' argument.")
proto = saved_object_graph_pb2.FunctionSpec()
# Intentionally skip encoding annotations of a function because function
# annotations are mainly for optional type checking during development
# and does not affect runtime behavior.
# https://www.python.org/dev/peps/pep-3107/
# https://docs.python.org/3/library/inspect.html#inspect.getfullargspec
proto.fullargspec.CopyFrom(
coder.encode_structure(
function_spec.fullargspec._replace(annotations={})))
proto.is_method = function_spec.is_method
proto.input_signature.CopyFrom(
coder.encode_structure(function_spec.input_signature))
# See `tf.function` and the ExperimentalCompile proto for details.
proto.experimental_compile = {
None: saved_object_graph_pb2.FunctionSpec.ExperimentalCompile.DEFAULT,
True: saved_object_graph_pb2.FunctionSpec.ExperimentalCompile.ON,
False: saved_object_graph_pb2.FunctionSpec.ExperimentalCompile.OFF,
}.get(function_spec.experimental_compile)
return proto
def serialize_concrete_function(concrete_function, node_ids, coder):
"""Build a SavedConcreteFunction."""
bound_inputs = []
try:
for capture in concrete_function.captured_inputs:
bound_inputs.append(node_ids[capture])
except KeyError:
raise KeyError(
"Failed to add concrete function %s to object based saved model as it "
"captures tensor %s which is unsupported or not reachable from root. "
"One reason could be that a stateful object or a variable that the "
"function depends on is not assigned to an attribute of the serialized "
"trackable object "
"(see SaveTest.test_captures_unreachable_variable)."
% (concrete_function.name, capture))
concrete_function_proto = saved_object_graph_pb2.SavedConcreteFunction()
structured_outputs = func_graph_module.convert_structure_to_signature(
concrete_function.structured_outputs)
concrete_function_proto.canonicalized_input_signature.CopyFrom(
coder.encode_structure(concrete_function.structured_input_signature))
concrete_function_proto.output_signature.CopyFrom(
coder.encode_structure(structured_outputs))
concrete_function_proto.bound_inputs.extend(bound_inputs)
return concrete_function_proto
def serialize_bare_concrete_function(concrete_function, name_map):
"""Build a SavedBareConcreteFunction."""
# pylint: disable=protected-access
name = name_map.get(compat.as_text(concrete_function.name),
concrete_function.name)
proto = saved_object_graph_pb2.SavedBareConcreteFunction(
concrete_function_name=name,
allowed_positional_arguments=concrete_function._num_positional_args,
argument_keywords=concrete_function._arg_keywords)
if concrete_function._pre_initialized_function_spec is not None:
coder = nested_structure_coder.StructureCoder()
proto.function_spec.CopyFrom(
_serialize_function_spec(
concrete_function._pre_initialized_function_spec, coder))
return proto
# pylint: enable=protected-access
def serialize_function(function, name_map):
"""Build a SavedFunction proto."""
coder = nested_structure_coder.StructureCoder()
proto = saved_object_graph_pb2.SavedFunction()
function_spec_proto = _serialize_function_spec(function.function_spec, coder)
proto.function_spec.CopyFrom(function_spec_proto)
all_concrete_functions = \
function._list_all_concrete_functions_for_serialization() # pylint: disable=protected-access
for concrete_function in all_concrete_functions:
proto.concrete_functions.append(
name_map.get(compat.as_text(concrete_function.name),
concrete_function.name))
return proto
def wrap_cached_variables(concrete_function):
"""Wraps the concrete function if it uses cached read tensors.
This function creates a new concrete function that captures variables
instead of the cached read tensors.
Args:
concrete_function: A Concrete function that maybe captures cached read
tensors.
Returns:
A concrete function that wraps the original concrete function, which
captures variables instead. If the original function did not capture any
cached values, then the function is not wrapped and the original object is
returned.
"""
outer_graph = func_graph_module.FuncGraph(
"{}_no_cache".format(concrete_function.graph.name))
captures = concrete_function.graph._captures # pylint: disable=protected-access
mapped_captures = None
remapped_captures = {}
# Update the external captures to use read tensors generated in the outer
# graph.
with outer_graph.as_default():
for capture, placeholder in concrete_function.graph.captures:
cached_variable = getattr(capture, "_cached_variable", None)
if cached_variable is None:
continue
cached_variable = cached_variable()
new_cached_value = cached_variable.read_value()
remapped_captures[id(capture)] = captures[id(capture)]
captures[id(capture)] = (new_cached_value, placeholder)
mapped_captures = True
if not mapped_captures:
return concrete_function
inner_concrete = defun.ConcreteFunction(concrete_function.graph)
def wrap_function(*args):
return inner_concrete._call_flat(args, inner_concrete.captured_inputs) # pylint:disable=protected-access
args = nest.flatten(concrete_function.structured_input_signature,
expand_composites=True)
func_graph_module.func_graph_from_py_func(
None, wrap_function, args=tuple(args), kwargs={},
func_graph=outer_graph)
fn = defun.ConcreteFunction(
outer_graph, function_spec=concrete_function._function_spec) # pylint: disable=protected-access
fn._arg_keywords = concrete_function._arg_keywords # pylint: disable=protected-access
fn._num_positional_args = concrete_function._num_positional_args # pylint: disable=protected-access
# Return the captures to their original values
for key, capture in remapped_captures.items():
captures[key] = capture
return fn