STT-tensorflow/tensorflow/python/ops/optional_grad.py
Skye Wanderman-Milne f6ee54c9b1 cond_v2: use optional tensors instead of FakeParams.
The purpose of this change is to not waste memory allocating large
FakeParams, which is especially important on GPU.

This also adds a few other fixes needed to get optional variants
working with cond_v2, including on GPU.

PiperOrigin-RevId: 223260005
2018-11-28 16:54:09 -08:00

34 lines
1.2 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Gradient functions for optional ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.ops import gen_dataset_ops
@ops.RegisterGradient("OptionalFromValue")
def _OptionalFromValueGrad(op, grad):
return gen_dataset_ops.optional_get_value(
grad, [t.dtype for t in op.inputs], [t.shape for t in op.inputs])
@ops.RegisterGradient("OptionalGetValue")
def _OptionalGetValueGrad(unused_op, *grads):
return gen_dataset_ops.optional_from_value(grads)