STT-tensorflow/tensorflow/python/ops/nn_grad_test.py
Penporn Koanantakool cbac31d59d Add a bfloat16 sum reducer that uses float32 accumulators. Fix existing tests.
The majority of the changes are from PR #38630 ([Intel MKL] Enable BF16 Softmax/SoftmaxGrad) which was reverted because of test failures.

PiperOrigin-RevId: 314152011
Change-Id: Ib50e1ae90016c05a6fc62b8d21ce7b3f34d28833
2020-06-01 10:21:39 -07:00

262 lines
9.1 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Python ops defined in nn_grad.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.eager import backprop
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_nn_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import gradient_checker_v2
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import nn_grad # pylint: disable=unused-import
from tensorflow.python.ops import nn_impl
from tensorflow.python.ops import nn_ops
from tensorflow.python.platform import test
class SoftmaxOpTest(test.TestCase):
# This test is for bfloat16, but the type has a problem with compute_gradient.
# TODO(penporn): Change the data type back to bfloat16 once b/157773623 is
# fixed. (compute_gradient internally converts bfloat16 to float32 for
# calculation anyway.)
def testSoftmaxGradGradExtendType(self):
with self.cached_session():
def f(x):
assert x.dtype == dtypes.float32
with backprop.GradientTape() as tape:
tape.watch(x)
y = nn_ops.softmax(x)
return tape.gradient(y, x)
x = constant_op.constant([[-2, -1, 1, 3], [5, 7, 8, 9]],
dtype=dtypes.float32)
error = gradient_checker_v2.max_error(
*gradient_checker_v2.compute_gradient(f, [x]))
self.assertLess(error, 1e-4)
class Relu6OpTest(test.TestCase):
@test_util.run_deprecated_v1
def testRelu6GradGrad(self):
inputs = constant_op.constant(
[[-2, -1, 1, 3], [5, 7, 8, 9]], dtype=dtypes.float32)
x_init_value = np.array([[-3.5, -1.5, 2, 4], [4.5, 7.5, 8.5, 11]])
r = nn_ops.relu6(inputs)
r_g = gradients_impl.gradients(r, inputs)[0]
with self.cached_session():
error = gradient_checker.compute_gradient_error(
inputs,
inputs.get_shape().as_list(),
r_g,
r_g.get_shape().as_list(),
x_init_value=x_init_value)
self.assertLess(error, 1e-4)
class Conv2dOpTest(test.TestCase):
def run_test(self, x, y):
with self.test_session():
error = gradient_checker.compute_gradient_error(x,
x.get_shape().as_list(),
y,
y.get_shape().as_list())
self.assertLess(error, 1e-3)
@test_util.run_deprecated_v1
def testConv2dGradWRTInput(self):
x = array_ops.placeholder(
dtype=dtypes.float32, shape=[1, 4, 4, 3], name='input')
f = constant_op.constant([0.5],
dtype=dtypes.float32,
shape=[2, 2, 3, 2],
name='filter')
y = nn_ops.conv2d(x, f, [1, 1, 1, 1], 'SAME')
self.run_test(x, y)
@test_util.run_deprecated_v1
def testConv2dGradWRTFilter(self):
x = constant_op.constant([0.5],
dtype=dtypes.float32,
shape=[1, 4, 4, 3],
name='input')
f = array_ops.placeholder(
dtype=dtypes.float32, shape=[2, 2, 3, 2], name='filter')
y = nn_ops.conv2d(x, f, [1, 1, 1, 1], 'SAME')
self.run_test(f, y)
@test_util.run_deprecated_v1
def testConv2dBackpropFilterGrad(self):
x = array_ops.placeholder(
dtype=dtypes.float32, shape=[1, 4, 4, 3], name='input')
f = constant_op.constant([0.5],
dtype=dtypes.float32,
shape=[2, 2, 3, 2],
name='filter')
strides = [1, 1, 1, 1]
padding = 'SAME'
out = nn_impl.depthwise_conv2d(x, f, strides, padding)
grad_wrt_input = gradients_impl.gradients(out, x)[0]
self.run_test(f, grad_wrt_input)
grad_wrt_filter = gradients_impl.gradients(out, f)[0]
self.run_test(x, grad_wrt_filter)
class DepthwiseConv2dTest(test.TestCase):
def run_test(self, x, y):
with self.test_session():
error = gradient_checker.compute_gradient_error(x,
x.get_shape().as_list(),
y,
y.get_shape().as_list())
self.assertLess(error, 1e-3)
@test_util.run_deprecated_v1
def testDepthwiseConv2dGradWRTInput(self):
x = array_ops.placeholder(
dtype=dtypes.float32, shape=[1, 4, 4, 3], name='input')
f = constant_op.constant([0.5],
dtype=dtypes.float32,
shape=[2, 2, 3, 2],
name='filter')
strides = [1, 1, 1, 1]
padding = 'SAME'
y = nn_impl.depthwise_conv2d(x, f, strides, padding)
self.run_test(x, y)
@test_util.run_deprecated_v1
def testDepthwiseConv2dGradWRTFilter(self):
x = constant_op.constant([0.5],
dtype=dtypes.float32,
shape=[1, 4, 4, 3],
name='input')
f = array_ops.placeholder(
dtype=dtypes.float32, shape=[2, 2, 3, 2], name='filter')
strides = [1, 1, 1, 1]
padding = 'SAME'
y = nn_impl.depthwise_conv2d(x, f, strides, padding)
self.run_test(f, y)
@test_util.run_deprecated_v1
def testDepthwiseConv2dBackpropFilterGrad(self):
x = array_ops.placeholder(
dtype=dtypes.float32, shape=[1, 4, 4, 3], name='input')
f = constant_op.constant([0.5],
dtype=dtypes.float32,
shape=[2, 2, 3, 2],
name='filter')
strides = [1, 1, 1, 1]
padding = 'SAME'
out = nn_impl.depthwise_conv2d(x, f, strides, padding)
grad_wrt_input = gradients_impl.gradients(out, x)[0]
self.run_test(f, grad_wrt_input)
grad_wrt_filter = gradients_impl.gradients(out, f)[0]
self.run_test(x, grad_wrt_filter)
class EluGradOpTest(test.TestCase):
@test_util.run_deprecated_v1
def testEluGradGradWRTgrad_ys(self):
inputs = constant_op.constant(
[[-2, -1, 1, 3], [5, 7, 8, 9]], dtype=dtypes.float32)
dummy = constant_op.constant(
[[3, 1, -1, -2], [9, 8, 7, 6]], dtype=dtypes.float32)
elu = gen_nn_ops.elu(inputs)
elu_grad = gradients_impl.gradients(elu, inputs, grad_ys=dummy)[0]
with self.cached_session():
error = gradient_checker.compute_gradient_error(
dummy,
dummy.shape,
elu_grad,
elu_grad.shape)
self.assertLess(error, 1e-4)
@test_util.run_deprecated_v1
def testEluGradGradWRTinputs(self):
inputs = constant_op.constant(
[[-2, -1, 1, 3], [5, 7, 8, 9]], dtype=dtypes.float32)
dummy = constant_op.constant(
[[3, 1, -1, -2], [9, 8, 7, 6]], dtype=dtypes.float32)
elu = gen_nn_ops.elu(inputs)
elu_grad = gradients_impl.gradients(elu, inputs, grad_ys=dummy)[0]
with self.cached_session():
error = gradient_checker.compute_gradient_error(
inputs,
inputs.shape,
elu_grad,
elu_grad.shape)
self.assertLess(error, 1e-4)
class SeluGradOpTest(test.TestCase):
@test_util.run_deprecated_v1
def testSeluGradGradWRTgrad_ys(self):
inputs = constant_op.constant(
[[-2, -1, 1, 3], [5, 7, 8, 9]], dtype=dtypes.float32)
dummy = constant_op.constant(
[[3, 1, -1, -2], [9, 8, 7, 6]], dtype=dtypes.float32)
selu = gen_nn_ops.selu(inputs)
selu_grad = gradients_impl.gradients(selu, inputs, grad_ys=dummy)[0]
with self.cached_session():
error = gradient_checker.compute_gradient_error(
dummy,
dummy.shape,
selu_grad,
selu_grad.shape)
self.assertLess(error, 1e-4)
@test_util.run_deprecated_v1
def testSeluGradGradWRTinputs(self):
inputs = constant_op.constant(
[[-2, -1, 1, 3], [5, 7, 8, 9]], dtype=dtypes.float32)
dummy = constant_op.constant(
[[3, 1, -1, -2], [9, 8, 7, 6]], dtype=dtypes.float32)
selu = gen_nn_ops.selu(inputs)
selu_grad = gradients_impl.gradients(selu, inputs, grad_ys=dummy)[0]
with self.cached_session():
error = gradient_checker.compute_gradient_error(
inputs,
inputs.shape,
selu_grad,
selu_grad.shape)
self.assertLess(error, 1e-4)
if __name__ == "__main__":
test.main()