251 lines
8.6 KiB
Python
251 lines
8.6 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for initializers in init_ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.core.protobuf import config_pb2
|
|
from tensorflow.python.client import session
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import tensor_shape as tensor_shape_lib
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import init_ops
|
|
from tensorflow.python.ops import variable_scope
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
@test_util.run_all_in_graph_and_eager_modes
|
|
class InitializersTest(test.TestCase):
|
|
|
|
def _runner(self,
|
|
init,
|
|
shape,
|
|
target_mean=None,
|
|
target_std=None,
|
|
target_max=None,
|
|
target_min=None):
|
|
output = self.evaluate(init(shape))
|
|
self.assertEqual(output.shape, shape)
|
|
lim = 3e-2
|
|
if target_std is not None:
|
|
self.assertGreater(lim, abs(output.std() - target_std))
|
|
if target_mean is not None:
|
|
self.assertGreater(lim, abs(output.mean() - target_mean))
|
|
if target_max is not None:
|
|
self.assertGreater(lim, abs(output.max() - target_max))
|
|
if target_min is not None:
|
|
self.assertGreater(lim, abs(output.min() - target_min))
|
|
|
|
def test_uniform(self):
|
|
shape = (9, 6, 99)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
self._runner(
|
|
init_ops.RandomUniform(minval=-1, maxval=1, seed=124),
|
|
tensor_shape,
|
|
target_mean=0.,
|
|
target_max=1,
|
|
target_min=-1)
|
|
|
|
def test_normal(self):
|
|
shape = (8, 12, 99)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
self._runner(
|
|
init_ops.RandomNormal(mean=0, stddev=1, seed=153),
|
|
tensor_shape,
|
|
target_mean=0.,
|
|
target_std=1)
|
|
|
|
def test_truncated_normal(self):
|
|
shape = (12, 99, 7)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
self._runner(
|
|
init_ops.TruncatedNormal(mean=0, stddev=1, seed=126),
|
|
tensor_shape,
|
|
target_mean=0.,
|
|
target_max=2,
|
|
target_min=-2)
|
|
|
|
def test_constant(self):
|
|
shape = (5, 6, 4)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
self._runner(
|
|
init_ops.Constant(2),
|
|
tensor_shape,
|
|
target_mean=2,
|
|
target_max=2,
|
|
target_min=2)
|
|
|
|
def test_lecun_uniform(self):
|
|
shape = (5, 6, 4, 2)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
fan_in, _ = init_ops._compute_fans(tensor_shape)
|
|
std = np.sqrt(1. / fan_in)
|
|
self._runner(
|
|
init_ops.lecun_uniform(seed=123),
|
|
tensor_shape,
|
|
target_mean=0.,
|
|
target_std=std)
|
|
|
|
def test_glorot_uniform_initializer(self):
|
|
shape = (5, 6, 4, 2)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
fan_in, fan_out = init_ops._compute_fans(tensor_shape)
|
|
std = np.sqrt(2. / (fan_in + fan_out))
|
|
self._runner(
|
|
init_ops.glorot_uniform_initializer(seed=123),
|
|
tensor_shape,
|
|
target_mean=0.,
|
|
target_std=std)
|
|
|
|
def test_he_uniform(self):
|
|
shape = (5, 6, 4, 2)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
fan_in, _ = init_ops._compute_fans(tensor_shape)
|
|
std = np.sqrt(2. / fan_in)
|
|
self._runner(
|
|
init_ops.he_uniform(seed=123),
|
|
tensor_shape,
|
|
target_mean=0.,
|
|
target_std=std)
|
|
|
|
def test_lecun_normal(self):
|
|
shape = (5, 6, 4, 2)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
fan_in, _ = init_ops._compute_fans(tensor_shape)
|
|
std = np.sqrt(1. / fan_in)
|
|
self._runner(
|
|
init_ops.lecun_normal(seed=123),
|
|
tensor_shape,
|
|
target_mean=0.,
|
|
target_std=std)
|
|
|
|
def test_glorot_normal_initializer(self):
|
|
shape = (5, 6, 4, 2)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
fan_in, fan_out = init_ops._compute_fans(tensor_shape)
|
|
std = np.sqrt(2. / (fan_in + fan_out))
|
|
self._runner(
|
|
init_ops.glorot_normal_initializer(seed=123),
|
|
tensor_shape,
|
|
target_mean=0.,
|
|
target_std=std)
|
|
|
|
def test_he_normal(self):
|
|
shape = (5, 6, 4, 2)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
fan_in, _ = init_ops._compute_fans(tensor_shape)
|
|
std = np.sqrt(2. / fan_in)
|
|
self._runner(
|
|
init_ops.he_normal(seed=123),
|
|
tensor_shape,
|
|
target_mean=0.,
|
|
target_std=std)
|
|
|
|
def test_Orthogonal(self):
|
|
shape = (20, 20)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
self._runner(
|
|
init_ops.Orthogonal(seed=123), tensor_shape, target_mean=0.)
|
|
|
|
@test_util.run_gpu_only
|
|
def testVariablePlacementWithOrthogonalInitializer(self):
|
|
|
|
if test.is_built_with_rocm():
|
|
self.skipTest('Disable subtest on ROCm due to missing QR op support')
|
|
|
|
with ops.Graph().as_default() as g:
|
|
with ops.device('gpu:0'):
|
|
variable_scope.get_variable(
|
|
name='v', shape=[8, 2], initializer=init_ops.Orthogonal)
|
|
variable_scope.get_variable(
|
|
name='w', shape=[8, 2], initializer=init_ops.RandomNormal)
|
|
run_metadata = config_pb2.RunMetadata()
|
|
run_options = config_pb2.RunOptions(
|
|
trace_level=config_pb2.RunOptions.FULL_TRACE)
|
|
config = config_pb2.ConfigProto(
|
|
allow_soft_placement=False, log_device_placement=True)
|
|
|
|
# Note: allow_soft_placement=False will fail whenever we cannot satisfy
|
|
# the colocation constraints.
|
|
with session.Session(config=config, graph=g) as sess:
|
|
sess.run(
|
|
variables.global_variables_initializer(),
|
|
options=run_options,
|
|
run_metadata=run_metadata)
|
|
|
|
@test_util.run_gpu_only
|
|
def test_eager_orthogonal_gpu(self):
|
|
with context.eager_mode():
|
|
v = variable_scope.get_variable(
|
|
name='v', shape=[8, 2], initializer=init_ops.Orthogonal)
|
|
w = variable_scope.get_variable(
|
|
name='w', shape=[8, 2], initializer=init_ops.RandomNormal)
|
|
self.assertTrue('GPU' in v.handle.device)
|
|
self.assertTrue('GPU' in w.handle.device)
|
|
|
|
def test_Identity(self):
|
|
with self.cached_session():
|
|
shape = (3, 4, 5)
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
with self.assertRaises(ValueError):
|
|
self._runner(
|
|
init_ops.Identity(),
|
|
tensor_shape,
|
|
target_mean=1. / int(tensor_shape[0]),
|
|
target_max=1.)
|
|
|
|
shape = (3, 3)
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
self._runner(
|
|
init_ops.Identity(),
|
|
tensor_shape,
|
|
target_mean=1. / int(tensor_shape[0]),
|
|
target_max=1.)
|
|
|
|
def test_Zeros(self):
|
|
shape = (4, 5)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
self._runner(
|
|
init_ops.Zeros(), tensor_shape, target_mean=0., target_max=0.)
|
|
|
|
def test_Ones(self):
|
|
shape = (4, 5)
|
|
with self.cached_session():
|
|
for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
|
|
self._runner(
|
|
init_ops.Ones(), tensor_shape, target_mean=1., target_max=1.)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|