STT-tensorflow/tensorflow/python/ops/functional_ops_test.py
Gaurav Jain faf6a15ff4 Rollforward: Support CompositeTensor in functional If/While
Remove support for composite expansion in While due to IndexedSlices handling.

PiperOrigin-RevId: 333413179
Change-Id: I9a3a1fab34b74f3741307c9ebdd42aac15f13bf7
2020-09-23 18:09:30 -07:00

87 lines
2.8 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for functional operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.eager import def_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import function
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import tensor_spec
from tensorflow.python.ops import functional_ops
from tensorflow.python.platform import test
class FunctionalOpsTest(test.TestCase):
def testIfWithDefun(self):
# Defun should only be used in graph mode
with ops.Graph().as_default():
@function.Defun(dtypes.float32)
def Then(x):
return x + 1
@function.Defun(dtypes.float32)
def Else(x):
return x - 1
inputs = [10.]
result = self.evaluate(functional_ops.If(False, inputs, Then, Else))
self.assertEqual([9.0], result)
def testIfWithFunction(self):
@def_function.function(
input_signature=[tensor_spec.TensorSpec((), dtypes.float32)])
def Then(x):
return x + 1
@def_function.function(
input_signature=[tensor_spec.TensorSpec((), dtypes.float32)])
def Else(x):
return x - 1
inputs = [10.]
then_cf = Then.get_concrete_function()
else_cf = Else.get_concrete_function()
result = self.evaluate(functional_ops.If(False, inputs, then_cf, else_cf))
self.assertEqual([9.0], result)
def testIfWithFunctionComposite(self):
signature = [tensor_spec.TensorSpec([], dtypes.float32)]
@def_function.function(input_signature=signature)
def Then(x):
return sparse_tensor.SparseTensor([[0]], [x + 1], [1])
@def_function.function(input_signature=signature)
def Else(x):
return sparse_tensor.SparseTensor([[0]], [x - 1], [1])
inputs = [10.]
then_cf = Then.get_concrete_function()
else_cf = Else.get_concrete_function()
result = functional_ops.If(False, inputs, then_cf, else_cf)
self.assertIsInstance(result, sparse_tensor.SparseTensor)
self.assertAllEqual([9.0], result.values)
if __name__ == '__main__':
test.main()