Explicit constructor call is no less clear and match what we export via the public API. The functions will be removed once all the internal users are migrated. PiperOrigin-RevId: 259620054
296 lines
9.6 KiB
Python
296 lines
9.6 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""The Normal (Gaussian) distribution class."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import tensor_shape
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import check_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import nn
|
|
from tensorflow.python.ops import random_ops
|
|
from tensorflow.python.ops.distributions import distribution
|
|
from tensorflow.python.ops.distributions import kullback_leibler
|
|
from tensorflow.python.ops.distributions import special_math
|
|
from tensorflow.python.util import deprecation
|
|
from tensorflow.python.util.tf_export import tf_export
|
|
|
|
|
|
__all__ = [
|
|
"Normal",
|
|
"NormalWithSoftplusScale",
|
|
]
|
|
|
|
|
|
@tf_export(v1=["distributions.Normal"])
|
|
class Normal(distribution.Distribution):
|
|
"""The Normal distribution with location `loc` and `scale` parameters.
|
|
|
|
#### Mathematical details
|
|
|
|
The probability density function (pdf) is,
|
|
|
|
```none
|
|
pdf(x; mu, sigma) = exp(-0.5 (x - mu)**2 / sigma**2) / Z
|
|
Z = (2 pi sigma**2)**0.5
|
|
```
|
|
|
|
where `loc = mu` is the mean, `scale = sigma` is the std. deviation, and, `Z`
|
|
is the normalization constant.
|
|
|
|
The Normal distribution is a member of the [location-scale family](
|
|
https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
|
|
constructed as,
|
|
|
|
```none
|
|
X ~ Normal(loc=0, scale=1)
|
|
Y = loc + scale * X
|
|
```
|
|
|
|
#### Examples
|
|
|
|
Examples of initialization of one or a batch of distributions.
|
|
|
|
```python
|
|
import tensorflow_probability as tfp
|
|
tfd = tfp.distributions
|
|
|
|
# Define a single scalar Normal distribution.
|
|
dist = tfd.Normal(loc=0., scale=3.)
|
|
|
|
# Evaluate the cdf at 1, returning a scalar.
|
|
dist.cdf(1.)
|
|
|
|
# Define a batch of two scalar valued Normals.
|
|
# The first has mean 1 and standard deviation 11, the second 2 and 22.
|
|
dist = tfd.Normal(loc=[1, 2.], scale=[11, 22.])
|
|
|
|
# Evaluate the pdf of the first distribution on 0, and the second on 1.5,
|
|
# returning a length two tensor.
|
|
dist.prob([0, 1.5])
|
|
|
|
# Get 3 samples, returning a 3 x 2 tensor.
|
|
dist.sample([3])
|
|
```
|
|
|
|
Arguments are broadcast when possible.
|
|
|
|
```python
|
|
# Define a batch of two scalar valued Normals.
|
|
# Both have mean 1, but different standard deviations.
|
|
dist = tfd.Normal(loc=1., scale=[11, 22.])
|
|
|
|
# Evaluate the pdf of both distributions on the same point, 3.0,
|
|
# returning a length 2 tensor.
|
|
dist.prob(3.0)
|
|
```
|
|
|
|
"""
|
|
|
|
@deprecation.deprecated(
|
|
"2019-01-01",
|
|
"The TensorFlow Distributions library has moved to "
|
|
"TensorFlow Probability "
|
|
"(https://github.com/tensorflow/probability). You "
|
|
"should update all references to use `tfp.distributions` "
|
|
"instead of `tf.distributions`.",
|
|
warn_once=True)
|
|
def __init__(self,
|
|
loc,
|
|
scale,
|
|
validate_args=False,
|
|
allow_nan_stats=True,
|
|
name="Normal"):
|
|
"""Construct Normal distributions with mean and stddev `loc` and `scale`.
|
|
|
|
The parameters `loc` and `scale` must be shaped in a way that supports
|
|
broadcasting (e.g. `loc + scale` is a valid operation).
|
|
|
|
Args:
|
|
loc: Floating point tensor; the means of the distribution(s).
|
|
scale: Floating point tensor; the stddevs of the distribution(s).
|
|
Must contain only positive values.
|
|
validate_args: Python `bool`, default `False`. When `True` distribution
|
|
parameters are checked for validity despite possibly degrading runtime
|
|
performance. When `False` invalid inputs may silently render incorrect
|
|
outputs.
|
|
allow_nan_stats: Python `bool`, default `True`. When `True`,
|
|
statistics (e.g., mean, mode, variance) use the value "`NaN`" to
|
|
indicate the result is undefined. When `False`, an exception is raised
|
|
if one or more of the statistic's batch members are undefined.
|
|
name: Python `str` name prefixed to Ops created by this class.
|
|
|
|
Raises:
|
|
TypeError: if `loc` and `scale` have different `dtype`.
|
|
"""
|
|
parameters = dict(locals())
|
|
with ops.name_scope(name, values=[loc, scale]) as name:
|
|
with ops.control_dependencies([check_ops.assert_positive(scale)] if
|
|
validate_args else []):
|
|
self._loc = array_ops.identity(loc, name="loc")
|
|
self._scale = array_ops.identity(scale, name="scale")
|
|
check_ops.assert_same_float_dtype([self._loc, self._scale])
|
|
super(Normal, self).__init__(
|
|
dtype=self._scale.dtype,
|
|
reparameterization_type=distribution.FULLY_REPARAMETERIZED,
|
|
validate_args=validate_args,
|
|
allow_nan_stats=allow_nan_stats,
|
|
parameters=parameters,
|
|
graph_parents=[self._loc, self._scale],
|
|
name=name)
|
|
|
|
@staticmethod
|
|
def _param_shapes(sample_shape):
|
|
return dict(
|
|
zip(("loc", "scale"), ([ops.convert_to_tensor(
|
|
sample_shape, dtype=dtypes.int32)] * 2)))
|
|
|
|
@property
|
|
def loc(self):
|
|
"""Distribution parameter for the mean."""
|
|
return self._loc
|
|
|
|
@property
|
|
def scale(self):
|
|
"""Distribution parameter for standard deviation."""
|
|
return self._scale
|
|
|
|
def _batch_shape_tensor(self):
|
|
return array_ops.broadcast_dynamic_shape(
|
|
array_ops.shape(self.loc),
|
|
array_ops.shape(self.scale))
|
|
|
|
def _batch_shape(self):
|
|
return array_ops.broadcast_static_shape(
|
|
self.loc.get_shape(),
|
|
self.scale.get_shape())
|
|
|
|
def _event_shape_tensor(self):
|
|
return constant_op.constant([], dtype=dtypes.int32)
|
|
|
|
def _event_shape(self):
|
|
return tensor_shape.TensorShape([])
|
|
|
|
def _sample_n(self, n, seed=None):
|
|
shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
|
|
sampled = random_ops.random_normal(
|
|
shape=shape, mean=0., stddev=1., dtype=self.loc.dtype, seed=seed)
|
|
return sampled * self.scale + self.loc
|
|
|
|
def _log_prob(self, x):
|
|
return self._log_unnormalized_prob(x) - self._log_normalization()
|
|
|
|
def _log_cdf(self, x):
|
|
return special_math.log_ndtr(self._z(x))
|
|
|
|
def _cdf(self, x):
|
|
return special_math.ndtr(self._z(x))
|
|
|
|
def _log_survival_function(self, x):
|
|
return special_math.log_ndtr(-self._z(x))
|
|
|
|
def _survival_function(self, x):
|
|
return special_math.ndtr(-self._z(x))
|
|
|
|
def _log_unnormalized_prob(self, x):
|
|
return -0.5 * math_ops.square(self._z(x))
|
|
|
|
def _log_normalization(self):
|
|
return 0.5 * math.log(2. * math.pi) + math_ops.log(self.scale)
|
|
|
|
def _entropy(self):
|
|
# Use broadcasting rules to calculate the full broadcast scale.
|
|
scale = self.scale * array_ops.ones_like(self.loc)
|
|
return 0.5 * math.log(2. * math.pi * math.e) + math_ops.log(scale)
|
|
|
|
def _mean(self):
|
|
return self.loc * array_ops.ones_like(self.scale)
|
|
|
|
def _quantile(self, p):
|
|
return self._inv_z(special_math.ndtri(p))
|
|
|
|
def _stddev(self):
|
|
return self.scale * array_ops.ones_like(self.loc)
|
|
|
|
def _mode(self):
|
|
return self._mean()
|
|
|
|
def _z(self, x):
|
|
"""Standardize input `x` to a unit normal."""
|
|
with ops.name_scope("standardize", values=[x]):
|
|
return (x - self.loc) / self.scale
|
|
|
|
def _inv_z(self, z):
|
|
"""Reconstruct input `x` from a its normalized version."""
|
|
with ops.name_scope("reconstruct", values=[z]):
|
|
return z * self.scale + self.loc
|
|
|
|
|
|
class NormalWithSoftplusScale(Normal):
|
|
"""Normal with softplus applied to `scale`."""
|
|
|
|
@deprecation.deprecated(
|
|
"2019-01-01",
|
|
"Use `tfd.Normal(loc, tf.nn.softplus(scale)) "
|
|
"instead.",
|
|
warn_once=True)
|
|
def __init__(self,
|
|
loc,
|
|
scale,
|
|
validate_args=False,
|
|
allow_nan_stats=True,
|
|
name="NormalWithSoftplusScale"):
|
|
parameters = dict(locals())
|
|
with ops.name_scope(name, values=[scale]) as name:
|
|
super(NormalWithSoftplusScale, self).__init__(
|
|
loc=loc,
|
|
scale=nn.softplus(scale, name="softplus_scale"),
|
|
validate_args=validate_args,
|
|
allow_nan_stats=allow_nan_stats,
|
|
name=name)
|
|
self._parameters = parameters
|
|
|
|
|
|
@kullback_leibler.RegisterKL(Normal, Normal)
|
|
def _kl_normal_normal(n_a, n_b, name=None):
|
|
"""Calculate the batched KL divergence KL(n_a || n_b) with n_a and n_b Normal.
|
|
|
|
Args:
|
|
n_a: instance of a Normal distribution object.
|
|
n_b: instance of a Normal distribution object.
|
|
name: (optional) Name to use for created operations.
|
|
default is "kl_normal_normal".
|
|
|
|
Returns:
|
|
Batchwise KL(n_a || n_b)
|
|
"""
|
|
with ops.name_scope(name, "kl_normal_normal", [n_a.loc, n_b.loc]):
|
|
one = constant_op.constant(1, dtype=n_a.dtype)
|
|
two = constant_op.constant(2, dtype=n_a.dtype)
|
|
half = constant_op.constant(0.5, dtype=n_a.dtype)
|
|
s_a_squared = math_ops.square(n_a.scale)
|
|
s_b_squared = math_ops.square(n_b.scale)
|
|
ratio = s_a_squared / s_b_squared
|
|
return (math_ops.squared_difference(n_a.loc, n_b.loc) / (two * s_b_squared)
|
|
+ half * (ratio - one - math_ops.log(ratio)))
|