STT-tensorflow/tensorflow/python/ops/distributions/dirichlet_multinomial.py
Amit Patankar 71f69fdaeb Internal change.
PiperOrigin-RevId: 220487789
2018-11-07 10:40:07 -08:00

356 lines
13 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The DirichletMultinomial distribution class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import special_math_ops
from tensorflow.python.ops.distributions import distribution
from tensorflow.python.ops.distributions import util as distribution_util
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import tf_export
__all__ = [
"DirichletMultinomial",
]
_dirichlet_multinomial_sample_note = """For each batch of counts,
`value = [n_0, ..., n_{K-1}]`, `P[value]` is the probability that after
sampling `self.total_count` draws from this Dirichlet-Multinomial distribution,
the number of draws falling in class `j` is `n_j`. Since this definition is
[exchangeable](https://en.wikipedia.org/wiki/Exchangeable_random_variables);
different sequences have the same counts so the probability includes a
combinatorial coefficient.
Note: `value` must be a non-negative tensor with dtype `self.dtype`, have no
fractional components, and such that
`tf.reduce_sum(value, -1) = self.total_count`. Its shape must be broadcastable
with `self.concentration` and `self.total_count`."""
@tf_export(v1=["distributions.DirichletMultinomial"])
class DirichletMultinomial(distribution.Distribution):
"""Dirichlet-Multinomial compound distribution.
The Dirichlet-Multinomial distribution is parameterized by a (batch of)
length-`K` `concentration` vectors (`K > 1`) and a `total_count` number of
trials, i.e., the number of trials per draw from the DirichletMultinomial. It
is defined over a (batch of) length-`K` vector `counts` such that
`tf.reduce_sum(counts, -1) = total_count`. The Dirichlet-Multinomial is
identically the Beta-Binomial distribution when `K = 2`.
#### Mathematical Details
The Dirichlet-Multinomial is a distribution over `K`-class counts, i.e., a
length-`K` vector of non-negative integer `counts = n = [n_0, ..., n_{K-1}]`.
The probability mass function (pmf) is,
```none
pmf(n; alpha, N) = Beta(alpha + n) / (prod_j n_j!) / Z
Z = Beta(alpha) / N!
```
where:
* `concentration = alpha = [alpha_0, ..., alpha_{K-1}]`, `alpha_j > 0`,
* `total_count = N`, `N` a positive integer,
* `N!` is `N` factorial, and,
* `Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j)` is the
[multivariate beta function](
https://en.wikipedia.org/wiki/Beta_function#Multivariate_beta_function),
and,
* `Gamma` is the [gamma function](
https://en.wikipedia.org/wiki/Gamma_function).
Dirichlet-Multinomial is a [compound distribution](
https://en.wikipedia.org/wiki/Compound_probability_distribution), i.e., its
samples are generated as follows.
1. Choose class probabilities:
`probs = [p_0,...,p_{K-1}] ~ Dir(concentration)`
2. Draw integers:
`counts = [n_0,...,n_{K-1}] ~ Multinomial(total_count, probs)`
The last `concentration` dimension parametrizes a single Dirichlet-Multinomial
distribution. When calling distribution functions (e.g., `dist.prob(counts)`),
`concentration`, `total_count` and `counts` are broadcast to the same shape.
The last dimension of `counts` corresponds single Dirichlet-Multinomial
distributions.
Distribution parameters are automatically broadcast in all functions; see
examples for details.
#### Pitfalls
The number of classes, `K`, must not exceed:
- the largest integer representable by `self.dtype`, i.e.,
`2**(mantissa_bits+1)` (IEE754),
- the maximum `Tensor` index, i.e., `2**31-1`.
In other words,
```python
K <= min(2**31-1, {
tf.float16: 2**11,
tf.float32: 2**24,
tf.float64: 2**53 }[param.dtype])
```
Note: This condition is validated only when `self.validate_args = True`.
#### Examples
```python
alpha = [1., 2., 3.]
n = 2.
dist = DirichletMultinomial(n, alpha)
```
Creates a 3-class distribution, with the 3rd class is most likely to be
drawn.
The distribution functions can be evaluated on counts.
```python
# counts same shape as alpha.
counts = [0., 0., 2.]
dist.prob(counts) # Shape []
# alpha will be broadcast to [[1., 2., 3.], [1., 2., 3.]] to match counts.
counts = [[1., 1., 0.], [1., 0., 1.]]
dist.prob(counts) # Shape [2]
# alpha will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.prob(counts) # Shape [5, 7]
```
Creates a 2-batch of 3-class distributions.
```python
alpha = [[1., 2., 3.], [4., 5., 6.]] # Shape [2, 3]
n = [3., 3.]
dist = DirichletMultinomial(n, alpha)
# counts will be broadcast to [[2., 1., 0.], [2., 1., 0.]] to match alpha.
counts = [2., 1., 0.]
dist.prob(counts) # Shape [2]
```
"""
# TODO(b/27419586) Change docstring for dtype of concentration once int
# allowed.
@deprecation.deprecated(
"2019-01-01",
"The TensorFlow Distributions library has moved to "
"TensorFlow Probability "
"(https://github.com/tensorflow/probability). You "
"should update all references to use `tfp.distributions` "
"instead of `tf.distributions`.",
warn_once=True)
def __init__(self,
total_count,
concentration,
validate_args=False,
allow_nan_stats=True,
name="DirichletMultinomial"):
"""Initialize a batch of DirichletMultinomial distributions.
Args:
total_count: Non-negative floating point tensor, whose dtype is the same
as `concentration`. The shape is broadcastable to `[N1,..., Nm]` with
`m >= 0`. Defines this as a batch of `N1 x ... x Nm` different
Dirichlet multinomial distributions. Its components should be equal to
integer values.
concentration: Positive floating point tensor, whose dtype is the
same as `n` with shape broadcastable to `[N1,..., Nm, K]` `m >= 0`.
Defines this as a batch of `N1 x ... x Nm` different `K` class Dirichlet
multinomial distributions.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
(e.g., mean, mode, variance) use the value "`NaN`" to indicate the
result is undefined. When `False`, an exception is raised if one or
more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
"""
parameters = dict(locals())
with ops.name_scope(name, values=[total_count, concentration]) as name:
# Broadcasting works because:
# * The broadcasting convention is to prepend dimensions of size [1], and
# we use the last dimension for the distribution, whereas
# the batch dimensions are the leading dimensions, which forces the
# distribution dimension to be defined explicitly (i.e. it cannot be
# created automatically by prepending). This forces enough explicitness.
# * All calls involving `counts` eventually require a broadcast between
# `counts` and concentration.
self._total_count = ops.convert_to_tensor(total_count, name="total_count")
if validate_args:
self._total_count = (
distribution_util.embed_check_nonnegative_integer_form(
self._total_count))
self._concentration = self._maybe_assert_valid_concentration(
ops.convert_to_tensor(concentration,
name="concentration"),
validate_args)
self._total_concentration = math_ops.reduce_sum(self._concentration, -1)
super(DirichletMultinomial, self).__init__(
dtype=self._concentration.dtype,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
reparameterization_type=distribution.NOT_REPARAMETERIZED,
parameters=parameters,
graph_parents=[self._total_count,
self._concentration],
name=name)
@property
def total_count(self):
"""Number of trials used to construct a sample."""
return self._total_count
@property
def concentration(self):
"""Concentration parameter; expected prior counts for that coordinate."""
return self._concentration
@property
def total_concentration(self):
"""Sum of last dim of concentration parameter."""
return self._total_concentration
def _batch_shape_tensor(self):
return array_ops.shape(self.total_concentration)
def _batch_shape(self):
return self.total_concentration.get_shape()
def _event_shape_tensor(self):
return array_ops.shape(self.concentration)[-1:]
def _event_shape(self):
# Event shape depends only on total_concentration, not "n".
return self.concentration.get_shape().with_rank_at_least(1)[-1:]
def _sample_n(self, n, seed=None):
n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
k = self.event_shape_tensor()[0]
unnormalized_logits = array_ops.reshape(
math_ops.log(random_ops.random_gamma(
shape=[n],
alpha=self.concentration,
dtype=self.dtype,
seed=seed)),
shape=[-1, k])
draws = random_ops.multinomial(
logits=unnormalized_logits,
num_samples=n_draws,
seed=distribution_util.gen_new_seed(seed, salt="dirichlet_multinomial"))
x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k), -2)
final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
x = array_ops.reshape(x, final_shape)
return math_ops.cast(x, self.dtype)
@distribution_util.AppendDocstring(_dirichlet_multinomial_sample_note)
def _log_prob(self, counts):
counts = self._maybe_assert_valid_sample(counts)
ordered_prob = (
special_math_ops.lbeta(self.concentration + counts)
- special_math_ops.lbeta(self.concentration))
return ordered_prob + distribution_util.log_combinations(
self.total_count, counts)
@distribution_util.AppendDocstring(_dirichlet_multinomial_sample_note)
def _prob(self, counts):
return math_ops.exp(self._log_prob(counts))
def _mean(self):
return self.total_count * (self.concentration /
self.total_concentration[..., array_ops.newaxis])
@distribution_util.AppendDocstring(
"""The covariance for each batch member is defined as the following:
```none
Var(X_j) = n * alpha_j / alpha_0 * (1 - alpha_j / alpha_0) *
(n + alpha_0) / (1 + alpha_0)
```
where `concentration = alpha` and
`total_concentration = alpha_0 = sum_j alpha_j`.
The covariance between elements in a batch is defined as:
```none
Cov(X_i, X_j) = -n * alpha_i * alpha_j / alpha_0 ** 2 *
(n + alpha_0) / (1 + alpha_0)
```
""")
def _covariance(self):
x = self._variance_scale_term() * self._mean()
return array_ops.matrix_set_diag(
-math_ops.matmul(x[..., array_ops.newaxis],
x[..., array_ops.newaxis, :]), # outer prod
self._variance())
def _variance(self):
scale = self._variance_scale_term()
x = scale * self._mean()
return x * (self.total_count * scale - x)
def _variance_scale_term(self):
"""Helper to `_covariance` and `_variance` which computes a shared scale."""
# We must take care to expand back the last dim whenever we use the
# total_concentration.
c0 = self.total_concentration[..., array_ops.newaxis]
return math_ops.sqrt((1. + c0 / self.total_count) / (1. + c0))
def _maybe_assert_valid_concentration(self, concentration, validate_args):
"""Checks the validity of the concentration parameter."""
if not validate_args:
return concentration
concentration = distribution_util.embed_check_categorical_event_shape(
concentration)
return control_flow_ops.with_dependencies([
check_ops.assert_positive(
concentration,
message="Concentration parameter must be positive."),
], concentration)
def _maybe_assert_valid_sample(self, counts):
"""Check counts for proper shape, values, then return tensor version."""
if not self.validate_args:
return counts
counts = distribution_util.embed_check_nonnegative_integer_form(counts)
return control_flow_ops.with_dependencies([
check_ops.assert_equal(
self.total_count, math_ops.reduce_sum(counts, -1),
message="counts last-dimension must sum to `self.total_count`"),
], counts)