STT-tensorflow/tensorflow/python/mlir_wrapper.cc
Andy Ly ba167d161e Add python wrapper mlir.experimental.convert_function for importing ConcreteFunctions into TF MLIR.
This takes a ConcreteFunction, collects a FunctionDef for the function and an associated FunctionDefLibrary, and imports the FunctionDef and FunctionDefLibrary via `ConvertFunctionToMlir`.
Control rets/target nodes of the entry function are also now supported in `ConvertFunctionToMlir`.

PiperOrigin-RevId: 331195841
Change-Id: Ib3a7264e90ca303ab7a850bf18c8d5e330063a4f
2020-09-11 12:21:46 -07:00

80 lines
3.5 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "pybind11/pybind11.h"
#include "tensorflow/c/tf_status.h"
#include "tensorflow/compiler/mlir/python/mlir.h"
#include "tensorflow/python/lib/core/pybind11_lib.h"
#include "tensorflow/python/lib/core/pybind11_status.h"
#include "tensorflow/python/lib/core/safe_ptr.h"
PYBIND11_MODULE(_pywrap_mlir, m) {
m.def("ImportGraphDef",
[](const std::string &graphdef, const std::string &pass_pipeline) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output =
tensorflow::ImportGraphDef(graphdef, pass_pipeline, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ImportFunction", [](const std::string &functiondef,
const std::string &functiondef_library,
const std::string &pass_pipeline) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output = tensorflow::ImportFunction(
functiondef, functiondef_library, pass_pipeline, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalConvertSavedModelToMlir",
[](const std::string &saved_model_path,
const std::string &exported_names, bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output = tensorflow::ExperimentalConvertSavedModelToMlir(
saved_model_path, exported_names, show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalConvertSavedModelV1ToMlir",
[](const std::string &saved_model_path, const std::string &tags,
bool lift_variables, bool upgrade_legacy, bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output =
tensorflow::ExperimentalConvertSavedModelV1ToMlir(
saved_model_path, tags, lift_variables, upgrade_legacy,
show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalRunPassPipeline",
[](const std::string &mlir_txt, const std::string &pass_pipeline,
bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output = tensorflow::ExperimentalRunPassPipeline(
mlir_txt, pass_pipeline, show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
};