STT-tensorflow/tensorflow/python/debug/lib/debug_graphs.py
Sergei Lebedev 6ca1a727a7 Added op_def_registry.get and op_def_registry.sync
The former fetches an OpDef for a given name, and the latter allows to
force-sync the contents of the Python registry with the C++ runtime.
The Python registry can be out-of-date e.g. when loading a Graph using
ops from an op library which has not yet been imported.

PiperOrigin-RevId: 270249444
2019-09-20 05:36:15 -07:00

504 lines
15 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes and methods for processing debugger-decorated graphs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.core.framework import graph_pb2
from tensorflow.python.framework import op_def_registry
from tensorflow.python.platform import tf_logging as logging
def parse_node_or_tensor_name(name):
"""Get the node name from a string that can be node or tensor name.
Args:
name: An input node name (e.g., "node_a") or tensor name (e.g.,
"node_a:0"), as a str.
Returns:
1) The node name, as a str. If the input name is a tensor name, i.e.,
consists of a colon, the final colon and the following output slot
will be stripped.
2) If the input name is a tensor name, the output slot, as an int. If
the input name is not a tensor name, None.
"""
if ":" in name and not name.endswith(":"):
node_name = name[:name.rfind(":")]
output_slot = int(name[name.rfind(":") + 1:])
return node_name, output_slot
else:
return name, None
def get_node_name(element_name):
node_name, _ = parse_node_or_tensor_name(element_name)
return node_name
def get_output_slot(element_name):
"""Get the output slot number from the name of a graph element.
If element_name is a node name without output slot at the end, 0 will be
assumed.
Args:
element_name: (`str`) name of the graph element in question.
Returns:
(`int`) output slot number.
"""
_, output_slot = parse_node_or_tensor_name(element_name)
return output_slot if output_slot is not None else 0
def is_copy_node(node_name):
"""Determine whether a node name is that of a debug Copy node.
Such nodes are inserted by TensorFlow core upon request in
RunOptions.debug_options.debug_tensor_watch_opts.
Args:
node_name: Name of the node.
Returns:
A bool indicating whether the input argument is the name of a debug Copy
node.
"""
return node_name.startswith("__copy_")
def is_debug_node(node_name):
"""Determine whether a node name is that of a debug node.
Such nodes are inserted by TensorFlow core upon request in
RunOptions.debug_options.debug_tensor_watch_opts.
Args:
node_name: Name of the node.
Returns:
A bool indicating whether the input argument is the name of a debug node.
"""
return node_name.startswith("__dbg_")
def parse_debug_node_name(node_name):
"""Parse the name of a debug node.
Args:
node_name: Name of the debug node.
Returns:
1. Name of the watched node, as a str.
2. Output slot index of the watched tensor, as an int.
3. Index of the debug node, as an int.
4. Name of the debug op, as a str, e.g, "DebugIdentity".
Raises:
ValueError: If the input node name is not a valid debug node name.
"""
prefix = "__dbg_"
name = node_name
if not name.startswith(prefix):
raise ValueError("Invalid prefix in debug node name: '%s'" % node_name)
name = name[len(prefix):]
if name.count("_") < 2:
raise ValueError("Invalid debug node name: '%s'" % node_name)
debug_op = name[name.rindex("_") + 1:]
name = name[:name.rindex("_")]
debug_op_index = int(name[name.rindex("_") + 1:])
name = name[:name.rindex("_")]
if name.count(":") != 1:
raise ValueError("Invalid tensor name in debug node name: '%s'" % node_name)
watched_node_name = name[:name.index(":")]
watched_output_slot = int(name[name.index(":") + 1:])
return watched_node_name, watched_output_slot, debug_op_index, debug_op
class GraphTracingReachedDestination(Exception):
pass
class DFSGraphTracer(object):
"""Graph input tracer using depth-first search."""
def __init__(self,
input_lists,
skip_node_names=None,
destination_node_name=None):
"""Constructor of _DFSGraphTracer.
Args:
input_lists: A list of dicts. Each dict is an adjacency (input) map from
the recipient node name as the key and the list of input node names
as the value.
skip_node_names: Optional: a list of node names to skip tracing.
destination_node_name: Optional: destination node name. If not `None`, it
should be the name of a destination not as a str and the graph tracing
will raise GraphTracingReachedDestination as soon as the node has been
reached.
Raises:
GraphTracingReachedDestination: if stop_at_node_name is not None and
the specified node is reached.
"""
self._input_lists = input_lists
self._skip_node_names = skip_node_names
self._inputs = []
self._visited_nodes = []
self._depth_count = 0
self._depth_list = []
self._destination_node_name = destination_node_name
def trace(self, graph_element_name):
"""Trace inputs.
Args:
graph_element_name: Name of the node or an output tensor of the node, as a
str.
Raises:
GraphTracingReachedDestination: if destination_node_name of this tracer
object is not None and the specified node is reached.
"""
self._depth_count += 1
node_name = get_node_name(graph_element_name)
if node_name == self._destination_node_name:
raise GraphTracingReachedDestination()
if node_name in self._skip_node_names:
return
if node_name in self._visited_nodes:
return
self._visited_nodes.append(node_name)
for input_list in self._input_lists:
if node_name not in input_list:
continue
for inp in input_list[node_name]:
if get_node_name(inp) in self._visited_nodes:
continue
self._inputs.append(inp)
self._depth_list.append(self._depth_count)
self.trace(inp)
self._depth_count -= 1
def inputs(self):
return self._inputs
def depth_list(self):
return self._depth_list
def _infer_device_name(graph_def):
"""Infer device name from a partition GraphDef."""
device_name = None
for node in graph_def.node:
if node.device:
device_name = node.device
break
if device_name is None:
logging.warn(
"Failed to infer device name from partition GraphDef: none of the "
"nodes of the GraphDef has a non-empty device name.")
return device_name
class DebugGraph(object):
"""Represents a debugger-decorated graph."""
def __init__(self, debug_graph_def, device_name=None):
self._debug_graph_def = debug_graph_def
self._non_debug_graph_def = None
self._node_attributes = {}
self._node_inputs = {}
self._node_reversed_ref_inputs = {}
self._node_ctrl_inputs = {}
self._node_recipients = {}
self._node_ctrl_recipients = {}
self._node_devices = {}
self._node_op_types = {}
self._copy_send_nodes = []
self._ref_args = {}
self._device_name = device_name
if not self._device_name:
self._device_name = _infer_device_name(debug_graph_def)
for node in debug_graph_def.node:
self._process_debug_graph_node(node)
self._prune_non_control_edges_of_debug_ops()
self._prune_control_edges_of_debug_ops()
self._prune_nodes_from_input_and_recipient_maps(self._get_copy_nodes())
self._populate_recipient_maps()
def _process_debug_graph_node(self, node):
"""Process a node from the debug GraphDef.
Args:
node: (NodeDef) A partition-graph node to be processed.
Raises:
ValueError: If duplicate node names are encountered.
"""
if is_debug_node(node.name):
# This is a debug node. Parse the node name and retrieve the
# information about debug watches on tensors. But do not include
# the node in the graph.
return
if node.name in self._node_inputs:
raise ValueError("Duplicate node name on device %s: '%s'" %
(self._device_name, node.name))
self._node_attributes[node.name] = node.attr
self._node_inputs[node.name] = []
self._node_ctrl_inputs[node.name] = []
self._node_recipients[node.name] = []
self._node_ctrl_recipients[node.name] = []
if node.name not in self._node_devices:
self._node_devices[node.name] = set()
self._node_devices[node.name].add(
node.device if node.device else self._device_name)
self._node_op_types[node.name] = node.op
self._ref_args[node.name] = self._get_ref_args(node)
for inp in node.input:
if is_copy_node(inp) and (node.op == "_Send" or node.op == "_Retval"):
self._copy_send_nodes.append(node.name)
if inp.startswith("^"):
cinp = inp[1:]
self._node_ctrl_inputs[node.name].append(cinp)
else:
self._node_inputs[node.name].append(inp)
def _get_ref_args(self, node):
"""Determine whether an input of an op is ref-type.
Args:
node: A `NodeDef`.
Returns:
A list of the arg names (as strs) that are ref-type.
"""
op_def = op_def_registry.get(node.op)
if op_def is None:
return []
ref_args = []
for i, output_arg in enumerate(op_def.output_arg):
if output_arg.is_ref:
arg_name = node.name if i == 0 else ("%s:%d" % (node.name, i))
ref_args.append(arg_name)
return ref_args
def _get_copy_nodes(self):
"""Find all Copy nodes in the loaded graph."""
copy_nodes = []
for node in self._node_inputs:
if is_copy_node(node):
copy_nodes.append(node)
return copy_nodes
def _prune_non_control_edges_of_debug_ops(self):
"""Prune (non-control) edges related to debug ops.
Prune the Copy ops and associated _Send ops inserted by the debugger out
from the non-control inputs and output recipients map. Replace the inputs
and recipients with original ones.
"""
for node in self._node_inputs:
inputs = self._node_inputs[node]
for i, inp in enumerate(inputs):
if is_copy_node(inp):
# Find the input to the Copy node, which should be the original
# input to the node.
orig_inp = self._node_inputs[inp][0]
inputs[i] = orig_inp
def _prune_control_edges_of_debug_ops(self):
"""Prune control edges related to the debug ops."""
for node in self._node_ctrl_inputs:
ctrl_inputs = self._node_ctrl_inputs[node]
debug_op_inputs = []
for ctrl_inp in ctrl_inputs:
if is_debug_node(ctrl_inp):
debug_op_inputs.append(ctrl_inp)
for debug_op_inp in debug_op_inputs:
ctrl_inputs.remove(debug_op_inp)
def _populate_recipient_maps(self):
"""Populate the map from node name to recipient(s) of its output(s).
This method also populates the input map based on reversed ref edges.
"""
for node in self._node_inputs:
inputs = self._node_inputs[node]
for inp in inputs:
inp = get_node_name(inp)
if inp not in self._node_recipients:
self._node_recipients[inp] = []
self._node_recipients[inp].append(node)
if inp in self._ref_args:
if inp not in self._node_reversed_ref_inputs:
self._node_reversed_ref_inputs[inp] = []
self._node_reversed_ref_inputs[inp].append(node)
for node in self._node_ctrl_inputs:
ctrl_inputs = self._node_ctrl_inputs[node]
for ctrl_inp in ctrl_inputs:
if ctrl_inp in self._copy_send_nodes:
continue
if ctrl_inp not in self._node_ctrl_recipients:
self._node_ctrl_recipients[ctrl_inp] = []
self._node_ctrl_recipients[ctrl_inp].append(node)
def _prune_nodes_from_input_and_recipient_maps(self, nodes_to_prune):
"""Prune nodes out of input and recipient maps.
Args:
nodes_to_prune: (`list` of `str`) Names of the nodes to be pruned.
"""
for node in nodes_to_prune:
del self._node_inputs[node]
del self._node_ctrl_inputs[node]
del self._node_recipients[node]
del self._node_ctrl_recipients[node]
def _reconstruct_non_debug_graph_def(self):
"""Reconstruct non-debug GraphDef.
Non-debug GraphDef means the original GraphDef without the Copy* and Debug
nodes inserted by the debugger.
"""
if self._non_debug_graph_def:
return
self._non_debug_graph_def = graph_pb2.GraphDef()
for node in self._debug_graph_def.node:
if is_copy_node(node.name) or is_debug_node(node.name):
continue
new_node = self._non_debug_graph_def.node.add()
new_node.CopyFrom(node)
# Redo the list of inputs, because in _debug_graph_def, the list can
# consist of Copy* and Debug* nodes inserted by the debugger. Those will
# be replaced with the original inputs here.
del new_node.input[:]
for inp in self._node_inputs[node.name]:
new_node.input.append(inp)
for ctrl_inp in self._node_ctrl_inputs[node.name]:
new_node.input.append("^" + ctrl_inp)
@property
def device_name(self):
return self._device_name
@property
def debug_graph_def(self):
"""The debugger-decorated GraphDef."""
return self._debug_graph_def
@property
def non_debug_graph_def(self):
"""The GraphDef without the Copy* and Debug* nodes added by the debugger."""
self._reconstruct_non_debug_graph_def()
return self._non_debug_graph_def
@property
def node_devices(self):
return self._node_devices
@property
def node_op_types(self):
return self._node_op_types
@property
def node_attributes(self):
return self._node_attributes
@property
def node_inputs(self):
return self._node_inputs
@property
def node_ctrl_inputs(self):
return self._node_ctrl_inputs
@property
def node_reversed_ref_inputs(self):
return self._node_reversed_ref_inputs
@property
def node_recipients(self):
return self._node_recipients
@property
def node_ctrl_recipients(self):
return self._node_ctrl_recipients
def reconstruct_non_debug_graph_def(debug_graph_def):
"""Reconstruct original (non-debugger-decorated) partition GraphDef.
This method strips the input `tf.compat.v1.GraphDef` of the Copy* and
Debug*-type nodes inserted by the debugger.
The reconstructed partition graph is identical to the original (i.e.,
non-debugger-decorated) partition graph except in the following respects:
1) The exact names of the runtime-inserted internal nodes may differ.
These include _Send, _Recv, _HostSend, _HostRecv, _Retval ops.
2) As a consequence of 1, the nodes that receive input directly from such
send- and recv-type ops will have different input names.
3) The parallel_iteration attribute of while-loop Enter ops are set to 1.
Args:
debug_graph_def: The debugger-decorated `tf.compat.v1.GraphDef`, with the
debugger-inserted Copy* and Debug* nodes.
Returns:
The reconstructed `tf.compat.v1.GraphDef` stripped of the debugger-inserted
nodes.
"""
return DebugGraph(debug_graph_def).non_debug_graph_def