This takes a ConcreteFunction, collects a FunctionDef for the function and an associated FunctionDefLibrary, and imports the FunctionDef and FunctionDefLibrary via `ConvertFunctionToMlir`. Control rets/target nodes of the entry function are also now supported in `ConvertFunctionToMlir`. PiperOrigin-RevId: 331195841 Change-Id: Ib3a7264e90ca303ab7a850bf18c8d5e330063a4f
87 lines
2.9 KiB
Python
87 lines
2.9 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# =============================================================================
|
|
"""Tests for python.compiler.mlir."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python.compiler.mlir import mlir
|
|
from tensorflow.python.eager import def_function
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors
|
|
from tensorflow.python.framework import tensor_spec
|
|
from tensorflow.python.ops import logging_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class MLIRGraphDefImportTest(test.TestCase):
|
|
|
|
def testImport(self):
|
|
"""Tests the basic flow of `tf.mlir.experimental.convert_graph_def`."""
|
|
mlir_module = mlir.convert_graph_def('')
|
|
# An empty graph should contain at least an empty main function.
|
|
self.assertIn('func @main', mlir_module)
|
|
|
|
def testInvalidPbtxt(self):
|
|
with self.assertRaisesRegex(errors.InvalidArgumentError,
|
|
'Could not parse input proto'):
|
|
mlir.convert_graph_def('some invalid proto')
|
|
|
|
|
|
class MLIRConcreteFunctionImportTest(test.TestCase):
|
|
|
|
def testImport(self):
|
|
|
|
@def_function.function
|
|
def identity(i):
|
|
return i
|
|
|
|
concrete_function = identity.get_concrete_function(
|
|
tensor_spec.TensorSpec(None, dtypes.float32))
|
|
mlir_module = mlir.convert_function(concrete_function)
|
|
self.assertRegex(mlir_module, r'func @.*identity.*\(')
|
|
|
|
def testImportWithCall(self):
|
|
|
|
@def_function.function
|
|
def callee(i):
|
|
return i
|
|
|
|
@def_function.function
|
|
def caller(i):
|
|
return callee(i)
|
|
|
|
concrete_function = caller.get_concrete_function(
|
|
tensor_spec.TensorSpec(None, dtypes.float32))
|
|
mlir_module = mlir.convert_function(concrete_function)
|
|
self.assertRegex(mlir_module, r'func @.*caller.*\(')
|
|
self.assertRegex(mlir_module, r'func @.*callee.*\(')
|
|
|
|
def testImportWithControlRet(self):
|
|
|
|
@def_function.function
|
|
def logging():
|
|
logging_ops.print_v2('some message')
|
|
|
|
concrete_function = logging.get_concrete_function()
|
|
mlir_module = mlir.convert_function(concrete_function, pass_pipeline='')
|
|
self.assertRegex(mlir_module, r'tf\.PrintV2')
|
|
self.assertRegex(mlir_module, r'tf_executor.fetch.*: !tf_executor.control')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|