423 lines
18 KiB
C++
423 lines
18 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/micro/all_ops_resolver.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
|
|
#include "tensorflow/lite/micro/test_helpers.h"
|
|
#include "tensorflow/lite/micro/testing/micro_test.h"
|
|
|
|
namespace tflite {
|
|
namespace testing {
|
|
namespace {
|
|
|
|
template <typename T>
|
|
TfLiteStatus ValidatePadGoldens(TfLiteTensor* tensors, int tensors_size,
|
|
const T* golden, T* output_data,
|
|
int output_length) {
|
|
int inputs_array_data[] = {2, 0, 1};
|
|
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
|
int outputs_array_data[] = {1, 2};
|
|
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
|
|
|
const TfLiteRegistration registration = tflite::ops::micro::Register_PAD();
|
|
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
|
outputs_array,
|
|
/*builtin_data=*/nullptr, micro_test::reporter);
|
|
|
|
// Prepare should catch dimension mismatches.
|
|
TfLiteStatus prepare_status = runner.InitAndPrepare();
|
|
if (prepare_status != kTfLiteOk) {
|
|
return prepare_status;
|
|
}
|
|
|
|
// Eval should catch quantization mismatches.
|
|
TfLiteStatus invoke_status = runner.Invoke();
|
|
if (invoke_status != kTfLiteOk) {
|
|
return invoke_status;
|
|
}
|
|
|
|
for (int i = 0; i < output_length; ++i) {
|
|
TF_LITE_MICRO_EXPECT_EQ(golden[i], output_data[i]);
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <typename T>
|
|
TfLiteStatus ValidatePadV2Goldens(TfLiteTensor* tensors, int tensors_size,
|
|
const T* golden, T* output_data,
|
|
int output_length) {
|
|
int inputs_array_data[] = {3, 0, 1, 2};
|
|
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
|
int outputs_array_data[] = {1, 3};
|
|
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
|
|
|
const TfLiteRegistration registration = tflite::ops::micro::Register_PADV2();
|
|
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
|
outputs_array,
|
|
/*builtin_data=*/nullptr, micro_test::reporter);
|
|
|
|
// Prepare should catch dimension mismatches.
|
|
TfLiteStatus prepare_status = runner.InitAndPrepare();
|
|
if (prepare_status != kTfLiteOk) {
|
|
return prepare_status;
|
|
}
|
|
|
|
// Eval should catch quantization mismatches.
|
|
TfLiteStatus invoke_status = runner.Invoke();
|
|
if (invoke_status != kTfLiteOk) {
|
|
return invoke_status;
|
|
}
|
|
|
|
for (int i = 0; i < output_length; ++i) {
|
|
TF_LITE_MICRO_EXPECT_EQ(golden[i], output_data[i]);
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
// output data and golden must be shaped correctly
|
|
void TestPadFloat(const int* input_dims_data, const float* input_data,
|
|
const int* pad_dims_data, const int32_t* pad_data,
|
|
const int* output_dims_data, const float* golden,
|
|
float* output_data,
|
|
TfLiteStatus expected_status = kTfLiteOk) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* pad_dims = IntArrayFromInts(pad_dims_data);
|
|
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
|
const int output_dims_count = ElementCount(*output_dims);
|
|
constexpr int inputs_size = 2;
|
|
constexpr int outputs_size = 1;
|
|
constexpr int tensors_size = inputs_size + outputs_size;
|
|
TfLiteTensor tensors[tensors_size] = {CreateTensor(input_data, input_dims),
|
|
CreateTensor(pad_data, pad_dims),
|
|
CreateTensor(output_data, output_dims)};
|
|
|
|
// Pad tensor must be constant.
|
|
tensors[1].allocation_type = kTfLiteMmapRo;
|
|
|
|
TF_LITE_MICRO_EXPECT_EQ(expected_status,
|
|
ValidatePadGoldens(tensors, tensors_size, golden,
|
|
output_data, output_dims_count));
|
|
}
|
|
|
|
// output data and golden must be shaped correctly
|
|
void TestPadV2Float(const int* input_dims_data, const float* input_data,
|
|
const int* pad_dims_data, const int32_t* pad_data,
|
|
const float pad_value, const int* output_dims_data,
|
|
const float* golden, float* output_data,
|
|
TfLiteStatus expected_status = kTfLiteOk) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* pad_dims = IntArrayFromInts(pad_dims_data);
|
|
const int pad_value_dims_data[] = {1, 1}; // Only one padding value allowed.
|
|
TfLiteIntArray* pad_value_dims = IntArrayFromInts(pad_value_dims_data);
|
|
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
|
const int output_dims_count = ElementCount(*output_dims);
|
|
constexpr int inputs_size = 3;
|
|
constexpr int outputs_size = 1;
|
|
constexpr int tensors_size = inputs_size + outputs_size;
|
|
TfLiteTensor tensors[tensors_size] = {
|
|
CreateTensor(input_data, input_dims), CreateTensor(pad_data, pad_dims),
|
|
CreateTensor(&pad_value, pad_value_dims),
|
|
CreateTensor(output_data, output_dims)};
|
|
|
|
// Pad tensor must be constant.
|
|
tensors[1].allocation_type = kTfLiteMmapRo;
|
|
|
|
TF_LITE_MICRO_EXPECT_EQ(expected_status,
|
|
ValidatePadV2Goldens(tensors, tensors_size, golden,
|
|
output_data, output_dims_count));
|
|
}
|
|
|
|
template <typename T>
|
|
void TestPadQuantized(const int* input_dims_data, const float* input_data,
|
|
T* input_quantized, float input_scale,
|
|
int input_zero_point, const int* pad_dims_data,
|
|
const int32_t* pad_data, const int* output_dims_data,
|
|
const float* golden, T* golden_quantized,
|
|
float output_scale, int output_zero_point, T* output_data,
|
|
TfLiteStatus expected_status = kTfLiteOk) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* pad_dims = IntArrayFromInts(pad_dims_data);
|
|
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
|
const int output_dims_count = ElementCount(*output_dims);
|
|
constexpr int inputs_size = 2;
|
|
constexpr int outputs_size = 1;
|
|
constexpr int tensors_size = inputs_size + outputs_size;
|
|
TfLiteTensor tensors[tensors_size] = {
|
|
CreateQuantizedTensor(input_data, input_quantized, input_dims,
|
|
input_scale, input_zero_point),
|
|
CreateTensor(pad_data, pad_dims),
|
|
CreateQuantizedTensor(output_data, output_dims, output_scale,
|
|
output_zero_point)};
|
|
|
|
// Pad tensor must be constant.
|
|
tensors[1].allocation_type = kTfLiteMmapRo;
|
|
|
|
tflite::Quantize(golden, golden_quantized, output_dims_count, output_scale,
|
|
output_zero_point);
|
|
TF_LITE_MICRO_EXPECT_EQ(
|
|
expected_status,
|
|
ValidatePadGoldens(tensors, tensors_size, golden_quantized, output_data,
|
|
output_dims_count));
|
|
}
|
|
|
|
template <typename T>
|
|
void TestPadV2Quantized(const int* input_dims_data, const float* input_data,
|
|
T* input_quantized, float input_scale,
|
|
int input_zero_point, const int* pad_dims_data,
|
|
const int32_t* pad_data, const float pad_value,
|
|
const float pad_value_scale,
|
|
const int pad_value_zero_point,
|
|
const int* output_dims_data, const float* golden,
|
|
T* golden_quantized, float output_scale,
|
|
int output_zero_point, T* output_data,
|
|
TfLiteStatus expected_status = kTfLiteOk) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* pad_dims = IntArrayFromInts(pad_dims_data);
|
|
const int pad_value_dims_data[] = {1, 1}; // Only one padding value allowed.
|
|
TfLiteIntArray* pad_value_dims = IntArrayFromInts(pad_value_dims_data);
|
|
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
|
T pad_value_quantized;
|
|
const int output_dims_count = ElementCount(*output_dims);
|
|
constexpr int inputs_size = 3;
|
|
constexpr int outputs_size = 1;
|
|
constexpr int tensors_size = inputs_size + outputs_size;
|
|
TfLiteTensor tensors[tensors_size] = {
|
|
CreateQuantizedTensor(input_data, input_quantized, input_dims,
|
|
input_scale, input_zero_point),
|
|
CreateTensor(pad_data, pad_dims),
|
|
CreateQuantizedTensor(&pad_value, &pad_value_quantized, pad_value_dims,
|
|
pad_value_scale, pad_value_zero_point),
|
|
CreateQuantizedTensor(output_data, output_dims, output_scale,
|
|
output_zero_point)};
|
|
|
|
// Pad tensor must be constant.
|
|
tensors[1].allocation_type = kTfLiteMmapRo;
|
|
tensors[2].params.scale = pad_value_scale;
|
|
tensors[3].params.scale = output_scale;
|
|
|
|
tflite::Quantize(golden, golden_quantized, output_dims_count, output_scale,
|
|
output_zero_point);
|
|
TF_LITE_MICRO_EXPECT_EQ(
|
|
expected_status,
|
|
ValidatePadV2Goldens(tensors, tensors_size, golden_quantized, output_data,
|
|
output_dims_count));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace testing
|
|
} // namespace tflite
|
|
|
|
TF_LITE_MICRO_TESTS_BEGIN
|
|
|
|
TF_LITE_MICRO_TEST(Test2DFloat) {
|
|
const int input_dims[] = {4, 1, 2, 2, 1};
|
|
const float input_values[] = {1, 2, 3, 4};
|
|
const int pad_dims[] = {2, 4, 2};
|
|
const int32_t pad_values[] = {1, 1, 0, 0, 1, 1, 0, 0};
|
|
const int output_dims[] = {4, 3, 2, 4, 1};
|
|
const float golden[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0,
|
|
0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
float output_data[24];
|
|
|
|
tflite::testing::TestPadFloat(input_dims, input_values, pad_dims, pad_values,
|
|
output_dims, golden, output_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(Test4DFloat) {
|
|
const int input_dims[] = {4, 1, 1, 1, 1};
|
|
const float input_values[] = {42};
|
|
const int pad_dims[] = {2, 4, 2};
|
|
const int32_t pad_values[] = {1, 1, 1, 1, 1, 1, 1, 1};
|
|
const int output_dims[] = {4, 3, 3, 3, 3};
|
|
const int kOutputLen = 81; // 3 * 3 * 3 * 3
|
|
float golden[kOutputLen];
|
|
for (int i = 0; i < kOutputLen; i++) {
|
|
golden[i] = 0;
|
|
}
|
|
golden[40] = 42;
|
|
float output_data[kOutputLen];
|
|
|
|
tflite::testing::TestPadFloat(input_dims, input_values, pad_dims, pad_values,
|
|
output_dims, const_cast<const float*>(golden),
|
|
output_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(Test2DFloatV2) {
|
|
const int input_dims[] = {4, 1, 2, 2, 1};
|
|
const float input_values[] = {1, 2, 3, 4};
|
|
const int pad_dims[] = {2, 4, 2};
|
|
const int32_t pad_values[] = {1, 1, 0, 0, 1, 1, 0, 0};
|
|
const float pad_value = 42;
|
|
const int output_dims[] = {4, 3, 2, 4, 1};
|
|
const float golden[] = {42, 42, 42, 42, 42, 42, 42, 42, 42, 1, 2, 42,
|
|
42, 3, 4, 42, 42, 42, 42, 42, 42, 42, 42, 42};
|
|
float output_data[24];
|
|
|
|
tflite::testing::TestPadV2Float(input_dims, input_values, pad_dims,
|
|
pad_values, pad_value, output_dims, golden,
|
|
output_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(Test2DUInt8) {
|
|
const int input_dims[] = {4, 1, 2, 2, 1};
|
|
const float input_values[] = {1, 2, 3, 4};
|
|
const float input_scale = 1.0f;
|
|
const int input_zero_point = 127;
|
|
const int pad_dims[] = {2, 4, 2};
|
|
const int32_t pad_values[] = {1, 1, 0, 0, 1, 1, 0, 0};
|
|
const int output_dims[] = {4, 3, 2, 4, 1};
|
|
const float golden[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0,
|
|
0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
const float output_scale = 1.0f;
|
|
const int output_zero_point = 127;
|
|
uint8_t output_data[24];
|
|
uint8_t input_quantized[4];
|
|
uint8_t golden_quantized[24];
|
|
|
|
tflite::testing::TestPadQuantized(
|
|
input_dims, input_values, input_quantized, input_scale, input_zero_point,
|
|
pad_dims, pad_values, output_dims, golden, golden_quantized, output_scale,
|
|
output_zero_point, output_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(Test2DUInt8V2) {
|
|
const int input_dims[] = {4, 1, 2, 2, 1};
|
|
const float input_values[] = {1, 2, 3, 4};
|
|
const float input_scale = 1.0f;
|
|
const int input_zero_point = 127;
|
|
const int pad_dims[] = {2, 4, 2};
|
|
const int32_t pad_values[] = {1, 1, 0, 0, 1, 1, 0, 0};
|
|
const float pad_value = 42;
|
|
const float pad_value_scale = 1.0;
|
|
const float pad_value_zero_point = 127;
|
|
const int output_dims[] = {4, 3, 2, 4, 1};
|
|
const float golden[] = {42, 42, 42, 42, 42, 42, 42, 42, 42, 1, 2, 42,
|
|
42, 3, 4, 42, 42, 42, 42, 42, 42, 42, 42, 42};
|
|
const float output_scale = 1.0f;
|
|
const int output_zero_point = 127;
|
|
uint8_t output_data[24];
|
|
uint8_t input_quantized[4];
|
|
uint8_t golden_quantized[24];
|
|
|
|
tflite::testing::TestPadV2Quantized(
|
|
input_dims, input_values, input_quantized, input_scale, input_zero_point,
|
|
pad_dims, pad_values, pad_value, pad_value_scale, pad_value_zero_point,
|
|
output_dims, golden, golden_quantized, output_scale, output_zero_point,
|
|
output_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(Test2DInt8) {
|
|
const int input_dims[] = {4, 1, 2, 2, 1};
|
|
const float input_values[] = {1, 2, 3, 4};
|
|
const float input_scale = 1.0f;
|
|
const int input_zero_point = 0;
|
|
const int pad_dims[] = {2, 4, 2};
|
|
const int32_t pad_values[] = {1, 1, 0, 0, 1, 1, 0, 0};
|
|
const int output_dims[] = {4, 3, 2, 4, 1};
|
|
const float golden[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0,
|
|
0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
const float output_scale = 1.0f;
|
|
const int output_zero_point = 0;
|
|
int8_t output_data[24];
|
|
int8_t input_quantized[4];
|
|
int8_t golden_quantized[24];
|
|
|
|
tflite::testing::TestPadQuantized(
|
|
input_dims, input_values, input_quantized, input_scale, input_zero_point,
|
|
pad_dims, pad_values, output_dims, golden, golden_quantized, output_scale,
|
|
output_zero_point, output_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(Test2DInt8V2) {
|
|
const int input_dims[] = {4, 1, 2, 2, 1};
|
|
const float input_values[] = {1, 2, 3, 4};
|
|
const float input_scale = 1.0f;
|
|
const int input_zero_point = 0;
|
|
const int pad_dims[] = {2, 4, 2};
|
|
const int32_t pad_values[] = {1, 1, 0, 0, 1, 1, 0, 0};
|
|
const float pad_value = 42;
|
|
const float pad_value_scale = 1.0;
|
|
const float pad_value_zero_point = 0;
|
|
const int output_dims[] = {4, 3, 2, 4, 1};
|
|
const float golden[] = {42, 42, 42, 42, 42, 42, 42, 42, 42, 1, 2, 42,
|
|
42, 3, 4, 42, 42, 42, 42, 42, 42, 42, 42, 42};
|
|
const float output_scale = 1.0f;
|
|
const int output_zero_point = 0;
|
|
int8_t output_data[24];
|
|
int8_t input_quantized[4];
|
|
int8_t golden_quantized[24];
|
|
|
|
tflite::testing::TestPadV2Quantized(
|
|
input_dims, input_values, input_quantized, input_scale, input_zero_point,
|
|
pad_dims, pad_values, pad_value, pad_value_scale, pad_value_zero_point,
|
|
output_dims, golden, golden_quantized, output_scale, output_zero_point,
|
|
output_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(Test2DInt8V2ExpectFailurePadValueQuantizationMismatch) {
|
|
const int input_dims[] = {4, 1, 2, 2, 1};
|
|
const float input_values[] = {1, 2, 3, 4};
|
|
const float input_scale = 1.0f;
|
|
const int input_zero_point = 0;
|
|
const int pad_dims[] = {2, 4, 2};
|
|
const int32_t pad_values[] = {1, 1, 0, 0, 1, 1, 0, 0};
|
|
const float pad_value = 42;
|
|
// Causes failure since this is in a different quantization space than input.
|
|
const float pad_value_scale = .5;
|
|
const float pad_value_zero_point = 0;
|
|
const int output_dims[] = {4, 3, 2, 4, 1};
|
|
const float golden[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
const float output_scale = 1.0f;
|
|
const int output_zero_point = 0;
|
|
int8_t output_data[24] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
int8_t input_quantized[4];
|
|
int8_t golden_quantized[24];
|
|
|
|
tflite::testing::TestPadV2Quantized(
|
|
input_dims, input_values, input_quantized, input_scale, input_zero_point,
|
|
pad_dims, pad_values, pad_value, pad_value_scale, pad_value_zero_point,
|
|
output_dims, golden, golden_quantized, output_scale, output_zero_point,
|
|
output_data, kTfLiteError);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(Test2DInt8ExpectFailureQuantizationRangeExcludesZero) {
|
|
const int input_dims[] = {4, 1, 2, 2, 1};
|
|
const float input_values[] = {1, 2, 3, 4};
|
|
const float input_scale = 1.0f;
|
|
const int input_zero_point = 0;
|
|
const int pad_dims[] = {2, 4, 2};
|
|
const int32_t pad_values[] = {1, 1, 0, 0, 1, 1, 0, 0};
|
|
const int output_dims[] = {4, 3, 2, 4, 1};
|
|
const float golden[] = {42, 42, 42, 42, 42, 42, 42, 42, 42, 1, 2, 42,
|
|
42, 3, 4, 42, 42, 42, 42, 42, 42, 42, 42, 42};
|
|
// Causes failure since this quantization zero point excludes zero.
|
|
const float output_scale = 1.0f;
|
|
const int output_zero_point = 129;
|
|
int8_t output_data[24];
|
|
int8_t input_quantized[4];
|
|
int8_t golden_quantized[24];
|
|
|
|
tflite::testing::TestPadQuantized(
|
|
input_dims, input_values, input_quantized, input_scale, input_zero_point,
|
|
pad_dims, pad_values, output_dims, golden, golden_quantized, output_scale,
|
|
output_zero_point, output_data, kTfLiteError);
|
|
}
|
|
|
|
TF_LITE_MICRO_TESTS_END
|