As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332520146 Change-Id: I405d986cfc653aaafcfdf4162c0acbd46220b921
725 lines
30 KiB
C++
725 lines
30 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/reference/comparisons.h"
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace comparisons {
|
|
namespace {
|
|
|
|
struct OpData {
|
|
ComparisonParams params;
|
|
};
|
|
|
|
constexpr int kInputTensor1 = 0;
|
|
constexpr int kInputTensor2 = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
TfLiteStatus EqualEval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input1 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
|
const TfLiteEvalTensor* input2 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
|
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
|
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
|
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
|
|
|
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteBool:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<bool>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<bool>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::EqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<bool>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<bool>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteFloat32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::EqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::EqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt64:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::EqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::EqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::EqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
|
TfLiteTypeGetName(input1->type), input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
// TODO(renjieliu): Refactor the logic to avoid duplications.
|
|
TfLiteStatus NotEqualEval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input1 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
|
const TfLiteEvalTensor* input2 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
|
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
|
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
|
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
|
|
|
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteBool:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<bool>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<bool>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::NotEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<bool>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<bool>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteFloat32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::NotEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::NotEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt64:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::NotEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowNotEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::NotEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowNotEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::NotEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
|
TfLiteTypeGetName(input1->type), input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus GreaterEval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input1 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
|
const TfLiteEvalTensor* input2 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
|
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
|
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
|
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
|
|
|
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteFloat32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt64:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
|
TfLiteTypeGetName(input1->type), input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus GreaterEqualEval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input1 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
|
const TfLiteEvalTensor* input2 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
|
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
|
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
|
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
|
|
|
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteFloat32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt64:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowGreaterEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::GreaterEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
|
TfLiteTypeGetName(input1->type), input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus LessEval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input1 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
|
const TfLiteEvalTensor* input2 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
|
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
|
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
|
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
|
|
|
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteFloat32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt64:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
|
TfLiteTypeGetName(input1->type), input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus LessEqualEval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input1 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
|
const TfLiteEvalTensor* input2 =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
|
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
|
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
|
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
|
|
|
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteFloat32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<float>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt32:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt64:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessEqualNoScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
case kTfLiteInt8:
|
|
requires_broadcast
|
|
? reference_ops::Broadcast4DSlowLessEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data)
|
|
: reference_ops::LessEqualWithScaling(
|
|
data->params, input1_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
|
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
|
output_data);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
|
TfLiteTypeGetName(input1->type), input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
OpData* data = static_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
TF_LITE_ENSURE(context, input1 != nullptr);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TF_LITE_ENSURE(context, input2 != nullptr);
|
|
|
|
if (input1->type == kTfLiteUInt8 || input1->type == kTfLiteInt8) {
|
|
auto input1_offset = -input1->params.zero_point;
|
|
auto input2_offset = -input2->params.zero_point;
|
|
const int kLeftShift = 8;
|
|
|
|
int32_t input1_multiplier;
|
|
int input1_shift;
|
|
QuantizeMultiplierSmallerThanOneExp(
|
|
static_cast<double>(input1->params.scale), &input1_multiplier,
|
|
&input1_shift);
|
|
int32_t input2_multiplier;
|
|
int input2_shift;
|
|
QuantizeMultiplierSmallerThanOneExp(
|
|
static_cast<double>(input2->params.scale), &input2_multiplier,
|
|
&input2_shift);
|
|
|
|
data->params.left_shift = kLeftShift;
|
|
data->params.input1_offset = input1_offset;
|
|
data->params.input1_multiplier = input1_multiplier;
|
|
data->params.input1_shift = input1_shift;
|
|
data->params.input2_offset = input2_offset;
|
|
data->params.input2_multiplier = input2_multiplier;
|
|
data->params.input2_shift = input2_shift;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace comparisons
|
|
|
|
TfLiteRegistration Register_EQUAL() {
|
|
return {/*init=*/comparisons::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/comparisons::Prepare,
|
|
/*invoke=*/comparisons::EqualEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
TfLiteRegistration Register_NOT_EQUAL() {
|
|
return {/*init=*/comparisons::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/comparisons::Prepare,
|
|
/*invoke=*/comparisons::NotEqualEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
TfLiteRegistration Register_GREATER() {
|
|
return {/*init=*/comparisons::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/comparisons::Prepare,
|
|
/*invoke=*/comparisons::GreaterEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
TfLiteRegistration Register_GREATER_EQUAL() {
|
|
return {/*init=*/comparisons::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/comparisons::Prepare,
|
|
/*invoke=*/comparisons::GreaterEqualEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
TfLiteRegistration Register_LESS() {
|
|
return {/*init=*/comparisons::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/comparisons::Prepare,
|
|
/*invoke=*/comparisons::LessEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
TfLiteRegistration Register_LESS_EQUAL() {
|
|
return {/*init=*/comparisons::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/comparisons::Prepare,
|
|
/*invoke=*/comparisons::LessEqualEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|