STT-tensorflow/tensorflow/lite/delegates/flex/util_test.cc
Jaesung Chung 3749694080 Add complex<double> tensor support in TFLite
Even though we do not support complex<double> op kernels on mobile, it is
inevitable to support complex<double> tensors in order to enable TF
complex<double> ops via flex delegate.

This CL enables the complex<double> tensor type in MLIR converter only.

PiperOrigin-RevId: 321072365
Change-Id: I5ecd631339b3d5e00b3d999b9f2c6102b554cea5
2020-07-13 18:19:24 -07:00

149 lines
5.0 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/flex/util.h"
#include <cstdarg>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "tensorflow/lite/string_type.h"
#include "tensorflow/lite/testing/util.h"
namespace tflite {
namespace flex {
namespace {
using tensorflow::DT_FLOAT;
using tensorflow::DT_INT32;
using tensorflow::Tensor;
using ::testing::ElementsAre;
struct TestContext : public TfLiteContext {
string error;
std::vector<int> new_size;
};
void ReportError(TfLiteContext* context, const char* format, ...) {
TestContext* c = static_cast<TestContext*>(context);
const size_t kBufferSize = 1024;
char temp_buffer[kBufferSize];
va_list args;
va_start(args, format);
vsnprintf(temp_buffer, kBufferSize, format, args);
va_end(args);
c->error = temp_buffer;
}
TfLiteStatus ResizeTensor(TfLiteContext* context, TfLiteTensor* tensor,
TfLiteIntArray* new_size) {
TestContext* c = static_cast<TestContext*>(context);
c->new_size.clear();
for (int i = 0; i < new_size->size; ++i) {
c->new_size.push_back(new_size->data[i]);
}
TfLiteIntArrayFree(new_size);
return kTfLiteOk;
}
TEST(UtilTest, ConvertStatus) {
TestContext context;
context.ReportError = ReportError;
EXPECT_EQ(ConvertStatus(&context, tensorflow::errors::Internal("Some Error")),
kTfLiteError);
EXPECT_EQ(context.error, "Some Error");
context.error.clear();
EXPECT_EQ(ConvertStatus(&context, tensorflow::Status()), kTfLiteOk);
EXPECT_TRUE(context.error.empty());
}
TEST(UtilTest, CopyShapeAndType) {
TestContext context;
context.ReportError = ReportError;
context.ResizeTensor = ResizeTensor;
TfLiteTensor dst;
EXPECT_EQ(CopyShapeAndType(&context, Tensor(), &dst), kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(0));
EXPECT_EQ(dst.type, kTfLiteFloat32);
EXPECT_EQ(CopyShapeAndType(&context, Tensor(DT_FLOAT, {1, 2}), &dst),
kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(1, 2));
EXPECT_EQ(dst.type, kTfLiteFloat32);
EXPECT_EQ(CopyShapeAndType(&context, Tensor(DT_INT32, {1, 2}), &dst),
kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(1, 2));
EXPECT_EQ(dst.type, kTfLiteInt32);
EXPECT_EQ(CopyShapeAndType(&context, Tensor(DT_FLOAT, {1LL << 44, 2}), &dst),
kTfLiteError);
EXPECT_EQ(context.error,
"Dimension value in TensorFlow shape is larger than supported by "
"TF Lite");
EXPECT_EQ(
CopyShapeAndType(&context, Tensor(tensorflow::DT_HALF, {1, 2}), &dst),
kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(1, 2));
EXPECT_EQ(dst.type, kTfLiteFloat16);
}
TEST(UtilTest, TypeConversionsFromTFLite) {
EXPECT_EQ(TF_FLOAT, GetTensorFlowDataType(kTfLiteNoType));
EXPECT_EQ(TF_FLOAT, GetTensorFlowDataType(kTfLiteFloat32));
EXPECT_EQ(TF_HALF, GetTensorFlowDataType(kTfLiteFloat16));
EXPECT_EQ(TF_DOUBLE, GetTensorFlowDataType(kTfLiteFloat64));
EXPECT_EQ(TF_INT16, GetTensorFlowDataType(kTfLiteInt16));
EXPECT_EQ(TF_INT32, GetTensorFlowDataType(kTfLiteInt32));
EXPECT_EQ(TF_UINT8, GetTensorFlowDataType(kTfLiteUInt8));
EXPECT_EQ(TF_INT64, GetTensorFlowDataType(kTfLiteInt64));
EXPECT_EQ(TF_COMPLEX64, GetTensorFlowDataType(kTfLiteComplex64));
EXPECT_EQ(TF_COMPLEX128, GetTensorFlowDataType(kTfLiteComplex128));
EXPECT_EQ(TF_STRING, GetTensorFlowDataType(kTfLiteString));
EXPECT_EQ(TF_BOOL, GetTensorFlowDataType(kTfLiteBool));
}
TEST(UtilTest, TypeConversionsFromTensorFlow) {
EXPECT_EQ(kTfLiteFloat16, GetTensorFlowLiteType(TF_HALF));
EXPECT_EQ(kTfLiteFloat32, GetTensorFlowLiteType(TF_FLOAT));
EXPECT_EQ(kTfLiteFloat64, GetTensorFlowLiteType(TF_DOUBLE));
EXPECT_EQ(kTfLiteInt16, GetTensorFlowLiteType(TF_INT16));
EXPECT_EQ(kTfLiteInt32, GetTensorFlowLiteType(TF_INT32));
EXPECT_EQ(kTfLiteUInt8, GetTensorFlowLiteType(TF_UINT8));
EXPECT_EQ(kTfLiteInt64, GetTensorFlowLiteType(TF_INT64));
EXPECT_EQ(kTfLiteComplex64, GetTensorFlowLiteType(TF_COMPLEX64));
EXPECT_EQ(kTfLiteComplex128, GetTensorFlowLiteType(TF_COMPLEX128));
EXPECT_EQ(kTfLiteString, GetTensorFlowLiteType(TF_STRING));
EXPECT_EQ(kTfLiteBool, GetTensorFlowLiteType(TF_BOOL));
EXPECT_EQ(kTfLiteNoType, GetTensorFlowLiteType(TF_RESOURCE));
EXPECT_EQ(kTfLiteNoType, GetTensorFlowLiteType(TF_VARIANT));
}
} // namespace
} // namespace flex
} // namespace tflite
int main(int argc, char** argv) {
::tflite::LogToStderr();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}