Sparse layouts are not supported on any of the backends. For backwards compatibility the fields stay in the protobuf, but parsing them is a no-op. PiperOrigin-RevId: 287924498 Change-Id: I8b1c1ec52e3a423015837bc10deee832921ba66c
267 lines
8.2 KiB
C++
267 lines
8.2 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#ifndef TENSORFLOW_COMPILER_XLA_LAYOUT_H_
|
|
#define TENSORFLOW_COMPILER_XLA_LAYOUT_H_
|
|
|
|
#include <vector>
|
|
|
|
#include "absl/container/inlined_vector.h"
|
|
#include "absl/types/span.h"
|
|
#include "tensorflow/compiler/xla/types.h"
|
|
#include "tensorflow/compiler/xla/util.h"
|
|
#include "tensorflow/compiler/xla/xla_data.pb.h"
|
|
#include "tensorflow/core/platform/types.h"
|
|
|
|
namespace xla {
|
|
|
|
// Describes a tile used in tiling-based layout. Refer to
|
|
// g3doc/third_party/tensorflow/compiler/xla/g3doc/tiled_layout.md for
|
|
// details.
|
|
class Tile {
|
|
public:
|
|
Tile() = default;
|
|
explicit Tile(absl::Span<const int64> dimensions)
|
|
: dimensions_(dimensions.begin(), dimensions.end()) {}
|
|
|
|
// De/Serialize a Tile to and from a TileProto.
|
|
static Tile CreateFromProto(const TileProto& tile_proto) {
|
|
return Tile(AsInt64Slice(tile_proto.dimensions()));
|
|
}
|
|
TileProto ToProto() const;
|
|
|
|
bool operator==(const Tile& other) const {
|
|
return dimensions() == other.dimensions();
|
|
}
|
|
bool operator!=(const Tile& other) const { return !(*this == other); }
|
|
|
|
string ToString() const;
|
|
|
|
// Returns the bound of the tile in the given dimension index.
|
|
int64 dimension(int i) const { return dimensions_.at(i); }
|
|
|
|
// Returns the dimensions of the tile.
|
|
absl::Span<const int64> dimensions() const { return dimensions_; }
|
|
|
|
Tile& add_dimensions(int64 value) {
|
|
dimensions_.push_back(value);
|
|
return *this;
|
|
}
|
|
|
|
Tile& clear_dimensions() {
|
|
dimensions_.clear();
|
|
return *this;
|
|
}
|
|
|
|
// This dimension size means the corresponding dimension in the shape is
|
|
// combined with the next minor dimension before tiling is applied.
|
|
static constexpr int64 kCombineDimension = std::numeric_limits<int64>::min();
|
|
|
|
template <typename H>
|
|
friend H AbslHashValue(H h, const Tile& t) {
|
|
return H::combine(std::move(h), t.dimensions_);
|
|
}
|
|
|
|
private:
|
|
// The bounds of the tile.
|
|
absl::InlinedVector<int64, 2> dimensions_;
|
|
};
|
|
|
|
class Layout {
|
|
public:
|
|
Layout() = default;
|
|
|
|
// Constructs a dense layout with the given minor-to-major order.
|
|
explicit Layout(absl::Span<const int64> minor_to_major)
|
|
: format_(DENSE),
|
|
minor_to_major_(minor_to_major.begin(), minor_to_major.end()) {}
|
|
|
|
// Constructs a dense tiled layout with the given minor-to-major order and
|
|
// tiles.
|
|
Layout(absl::Span<const int64> minor_to_major, absl::Span<const Tile> tiles,
|
|
int64 element_size_in_bits = 0, int64 memory_space = 0)
|
|
: format_(DENSE),
|
|
minor_to_major_(minor_to_major.begin(), minor_to_major.end()),
|
|
tiles_(tiles.begin(), tiles.end()),
|
|
element_size_in_bits_(element_size_in_bits),
|
|
memory_space_(memory_space) {}
|
|
|
|
// Construct a shape from a LayoutProto.
|
|
static Layout CreateFromProto(const LayoutProto& proto);
|
|
|
|
// Returns a LayoutProto representation of the Layout.
|
|
LayoutProto ToProto() const;
|
|
|
|
// Returns a human-readable string that represents this layout.
|
|
string ToString() const;
|
|
|
|
// Equal is a configurable functor to check the equality of two layouts.
|
|
//
|
|
// Examples:
|
|
//
|
|
// - Comparing two layouts ignoring their difference in tiles:
|
|
// Equal().IgnoreTiles()(layout1, layout2);
|
|
//
|
|
// - Comparing two layouts ignoring their difference in tiles and element
|
|
// size:
|
|
// Equal().IgnoreTiles().IgnoreElementSize()(layout1, layout2);
|
|
class Equal {
|
|
public:
|
|
Equal() = default;
|
|
|
|
bool operator()(const Layout& lhs, const Layout& rhs);
|
|
|
|
Equal& IgnoreTiles() {
|
|
ignore_tiles_ = true;
|
|
return *this;
|
|
}
|
|
|
|
Equal& IgnoreElementSize() {
|
|
ignore_element_size_ = true;
|
|
return *this;
|
|
}
|
|
|
|
Equal& MinorToMajorOnly() {
|
|
ignore_tiles_ = true;
|
|
ignore_element_size_ = true;
|
|
ignore_memory_space_ = true;
|
|
return *this;
|
|
}
|
|
|
|
Equal& IgnoreMemorySpace() {
|
|
ignore_memory_space_ = true;
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
bool ignore_tiles_ = false;
|
|
bool ignore_element_size_ = false;
|
|
bool ignore_memory_space_ = false;
|
|
};
|
|
|
|
bool operator==(const Layout& other) const;
|
|
bool operator!=(const Layout& other) const { return !(*this == other); }
|
|
|
|
// The following methods mirror the protobuf generated code interface for the
|
|
// message LayoutProto. This enabled easy migration of this data structure
|
|
// from a proto to a proper C++ class.
|
|
//
|
|
// TODO(b/29771030): Replace or augment these methods with a more ergonomic
|
|
// interface.
|
|
|
|
// Methods for accessing the format.
|
|
Format format() const { return format_; }
|
|
Layout& set_format(Format value) {
|
|
format_ = value;
|
|
return *this;
|
|
}
|
|
|
|
// Methods for accessing the minor-to-major array.
|
|
int minor_to_major_size() const { return minor_to_major_.size(); }
|
|
int64 minor_to_major(int index) const { return minor_to_major_.at(index); }
|
|
Layout& set_minor_to_major(int index, int64 value) {
|
|
minor_to_major_.at(index) = value;
|
|
return *this;
|
|
}
|
|
Layout& add_minor_to_major(int64 value) {
|
|
minor_to_major_.push_back(value);
|
|
return *this;
|
|
}
|
|
Layout& clear_minor_to_major() {
|
|
minor_to_major_.clear();
|
|
return *this;
|
|
}
|
|
absl::Span<const int64> minor_to_major() const { return minor_to_major_; }
|
|
absl::InlinedVector<int64, 6>* mutable_minor_to_major() {
|
|
return &minor_to_major_;
|
|
}
|
|
|
|
// Methods for accessing the tile field.
|
|
int tiles_size() const { return tiles_.size(); }
|
|
const Tile& tiles(int index) const { return tiles_.at(index); }
|
|
Tile* mutable_tiles(int index) { return &tiles_.at(index); }
|
|
Tile* add_tiles() {
|
|
tiles_.push_back(Tile());
|
|
return &tiles_.back();
|
|
}
|
|
Layout& clear_tiles() {
|
|
tiles_.clear();
|
|
return *this;
|
|
}
|
|
absl::Span<const Tile> tiles() const { return tiles_; }
|
|
absl::InlinedVector<Tile, 2>* mutable_tiles() { return &tiles_; }
|
|
|
|
int64 element_size_in_bits() const { return element_size_in_bits_; }
|
|
Layout& set_element_size_in_bits(int64 value) {
|
|
element_size_in_bits_ = value;
|
|
return *this;
|
|
}
|
|
static constexpr int64 kDefaultMemorySpace = 0;
|
|
int64 memory_space() const { return memory_space_; }
|
|
Layout& set_memory_space(int64 value) {
|
|
memory_space_ = value;
|
|
return *this;
|
|
}
|
|
|
|
void Swap(Layout* other) {
|
|
using std::swap;
|
|
swap(*this, *other);
|
|
}
|
|
|
|
void Clear() {
|
|
*this = Layout();
|
|
format_ = INVALID_FORMAT;
|
|
}
|
|
|
|
template <typename H>
|
|
friend H AbslHashValue(H h, const Layout& l) {
|
|
return H::combine(std::move(h), l.format_, l.minor_to_major_, l.tiles_,
|
|
l.element_size_in_bits_);
|
|
}
|
|
|
|
private:
|
|
// The format of this layout.
|
|
Format format_ = INVALID_FORMAT;
|
|
|
|
// A map from physical dimension numbers to logical dimension numbers.
|
|
// The first element is the most minor physical dimension (fastest varying
|
|
// index) and the last the most major (slowest varying index). The contents of
|
|
// the vector are the indices of the *logical* dimensions in the shape.
|
|
//
|
|
// For example, in shape f32[8,100,100,3]{3,0,2,1}, the logical dimensions
|
|
// are [8,100,100,3] and minor_to_major_ is {3,0,2,1}.
|
|
// So, the most minor physical dimension is [8,100,100,3][3], which is size 3.
|
|
// The second most minor is [8,100,100,3][0], which is size 8.
|
|
// The third most minor is [8,100,100,3][2], which is size 100.
|
|
// And the major dim is [8,100,100,3][1], which is size 100.
|
|
absl::InlinedVector<int64, 6> minor_to_major_;
|
|
|
|
// The tiles used in tiling-based layout.
|
|
absl::InlinedVector<Tile, 2> tiles_;
|
|
|
|
// The number of bits used to store an individual array element.
|
|
int64 element_size_in_bits_ = 0;
|
|
|
|
// The assigned memory space.
|
|
int64 memory_space_ = 0;
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& out, const Tile& Tile);
|
|
std::ostream& operator<<(std::ostream& out, const Layout& layout);
|
|
|
|
} // namespace xla
|
|
|
|
#endif // TENSORFLOW_COMPILER_XLA_LAYOUT_H_
|