STT-tensorflow/tensorflow/compiler/tf2xla/xla_helpers.h
George Karpenkov bcfb60d0a1 [TF2XLA] [NFC] Break apart the [TF2XLA/MLIR] -> xla_compiler dependency edge
This is needed for invoking the MLIR tf2xla bridge from xla_compiler.

This CL breaks apart items from xla_compiler into individual build targets,
which are then depended on from the MLIR TF bridge.

PiperOrigin-RevId: 323640340
Change-Id: I78b972503db9e7b5254014ca7e889005490d8339
2020-07-28 13:36:06 -07:00

173 lines
7.1 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// This file defines helper routines for the XLA device.
#ifndef TENSORFLOW_COMPILER_TF2XLA_XLA_HELPERS_H_
#define TENSORFLOW_COMPILER_TF2XLA_XLA_HELPERS_H_
#include "absl/types/span.h"
#include "tensorflow/compiler/tf2xla/host_compute_metadata.pb.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/compiler/xla/service/hlo_sharding.h"
#include "tensorflow/core/framework/tensor.h"
namespace tensorflow {
// Helper methods for building XLA computations.
class XlaHelpers {
public:
// Returns a handle representing the zero value of a scalar
// element of data_type.
static xla::XlaOp Zero(xla::XlaBuilder* b, DataType data_type);
// Returns a handle representing the one value of a scalar
// element of data_type.
static xla::XlaOp One(xla::XlaBuilder* b, DataType data_type);
// Returns a handle representing the given value of an integer scalar
// element of data_type.
// Note that unlike One and Zero, does not work on boolean types.
static xla::XlaOp IntegerLiteral(xla::XlaBuilder* b, DataType data_type,
int64 value);
// Returns a handle representing the given value of a floating-point scalar
// element of data_type.
static xla::XlaOp FloatLiteral(xla::XlaBuilder* b, DataType data_type,
double value);
// Reshapes literal 'input' to have 'shape'. Both the original shape and
// 'shape' must contain the same number of elements.
static Status ReshapeLiteral(const xla::Literal& input,
absl::Span<const int64> shape,
xla::Literal* output);
// Converts `indices` into a one-hot representation. `depth` is the size
// of the new axis to add. `axis` is the position at which to add the new
// axis. `indices_shape` is the shape of `indices`. `on_value` and
// `off_value` represent the values to use for the on and off positions,
// respectively.
static Status OneHot(xla::XlaBuilder* builder, int64 depth, int axis,
DataType index_type, const TensorShape& indices_shape,
const xla::XlaOp& indices, const xla::XlaOp& on_value,
const xla::XlaOp& off_value, xla::XlaOp* one_hot);
// Certain DataTypes should use increased precision DataTypes when performing
// reductions. This function remaps a given DataType to a higher precision
// DataType if needed.
static DataType SumAccumulationType(const DataType& dtype);
// A helper for creating a ConvertElementType xla op given a DataType rather
// than the xla::PrimitiveType.
static xla::XlaOp ConvertElementType(const xla::XlaOp& operand,
const DataType new_element_type);
typedef std::function<xla::StatusOr<xla::Shape>(const TensorShape&, DataType,
bool)>
ShapeRepresentationFn;
};
// Creates an identity shape representation function.
XlaHelpers::ShapeRepresentationFn IdentityShapeRepresentationFn();
// Rewrites the layout of xla_shape if there is tiled sharding.
Status RewriteLayoutWithShardedShape(
const absl::optional<xla::HloSharding>& sharding, bool use_fast_memory,
XlaHelpers::ShapeRepresentationFn shape_representation_fn,
xla::Shape* xla_shape);
// Adds reshapes to fix the layout of an output, if a shape_representation_fn or
// sharding is present.
xla::StatusOr<xla::XlaOp> ReshapeWithCorrectRepresentationAndSharding(
xla::XlaBuilder* builder, xla::XlaOp original, xla::Shape original_shape,
XlaHelpers::ShapeRepresentationFn shape_representation_fn,
absl::optional<xla::OpSharding> sharding, bool fast_mem);
struct XlaOutputDescription {
// Type and shape of the output. The shape is the unflattened shape.
// When `type` is DT_RESOURCE, `shape` is the shape of the resource
// variable's value.
DataType type;
TensorShape shape;
// Constant output value, if known to be constant at JIT compilation time.
// 'Tensor' is in host memory.
bool is_constant = false;
Tensor constant_value;
// When this output is a resource, i.e. `type == DT_RESOURCE`, this is
// the index of the input that contains the resource.
int input_index;
// Whether this output is a TensorList.
bool is_tensor_list = false;
};
// Describes a variable write side effect of the computation.
struct XlaResourceUpdate {
// Index of the input that contains the variable resource to write to.
int input_index;
// Type and shape of the tensor to be written back.
// The `shape` field has the same meaning as the Argument::shape field.
DataType type;
TensorShape shape;
// Was the value of the variable modified by the computation?
// (Always true, unless `return_updated_values_for_all_resources` is true.)
bool modified;
// If the resource is a TensorArray, the set of gradients read or written.
std::set<string> tensor_array_gradients_accessed;
};
struct XlaCompilationResult {
// Vector that maps from the parameters of the XLA computation to their
// original argument positions. To handle compile-time constant inputs, the
// parameters to the XLA computation may be a subset of the original
// arguments. The relative ordering of parameters are maintained.
std::vector<int> input_mapping;
// Input shapes of the computation. If we are flattening inputs, these are
// the flattened shapes.
std::vector<xla::Shape> xla_input_shapes;
// Output shape in XLA format. The output shape is always a tuple. If we
// are flattening outputs, these are the flattened shapes.
xla::Shape xla_output_shape;
// TensorFlow shapes of outputs, together with the values of any
// constant arguments. Vector indexed by Tensorflow _Retval number,
// containing both constant and non-constant results.
std::vector<XlaOutputDescription> outputs;
// TensorFlow shapes and types of sends/recvs from HostCompute Ops to their
// matching RecvAtHost/SendFromHost Ops in the outer graph.
tf2xla::HostComputeMetadata host_compute_metadata;
// Resources whose values were updated by the computation, ordered
// by return value position (which is the same as the order the resources
// were passed as arguments). Resource updates follow the non-constant
// results in the outputs of XLA computation.
std::vector<XlaResourceUpdate> resource_updates;
// The XLA computation built from the tensorflow subgraph.
std::shared_ptr<xla::XlaComputation> computation;
};
} // end namespace tensorflow
#endif // TENSORFLOW_COMPILER_TF2XLA_XLA_HELPERS_H_