This is needed for invoking the MLIR tf2xla bridge from xla_compiler. This CL breaks apart items from xla_compiler into individual build targets, which are then depended on from the MLIR TF bridge. PiperOrigin-RevId: 323640340 Change-Id: I78b972503db9e7b5254014ca7e889005490d8339
54 lines
1.9 KiB
C++
54 lines
1.9 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/compiler/tf2xla/xla_argument.h"
|
|
|
|
namespace tensorflow {
|
|
|
|
bool XlaArgument::operator==(const XlaArgument& other) const {
|
|
if (std::tie(kind, resource_kind, type, name, initialized, max_array_size,
|
|
tensor_array_gradients) !=
|
|
std::tie(other.kind, other.resource_kind, other.type, other.name,
|
|
other.initialized, other.max_array_size,
|
|
other.tensor_array_gradients)) {
|
|
return false;
|
|
}
|
|
if (absl::holds_alternative<xla::Shape>(shape)) {
|
|
if (!absl::holds_alternative<xla::Shape>(other.shape)) {
|
|
return false;
|
|
}
|
|
if (!xla::Shape::Equal()(absl::get<xla::Shape>(shape),
|
|
absl::get<xla::Shape>(other.shape))) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!absl::holds_alternative<TensorShape>(other.shape)) {
|
|
return false;
|
|
}
|
|
if (absl::get<TensorShape>(shape) != absl::get<TensorShape>(other.shape)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (constant_value.shape() != other.constant_value.shape()) {
|
|
return false;
|
|
}
|
|
if (is_same_data_across_replicas != other.is_same_data_across_replicas) {
|
|
return false;
|
|
}
|
|
return constant_value.tensor_data() == other.constant_value.tensor_data();
|
|
}
|
|
|
|
} // end namespace tensorflow
|