STT-tensorflow/tensorflow/compiler/tf2xla/kernels/if_op.cc
George Karpenkov cd13583aee [TF2XLA] [NFC] Function are wonderful, let's use them (Simplifying IfOp::Compile)
PiperOrigin-RevId: 323119743
Change-Id: I06c5f33bbf543bdaa7509f584f7876511de18ff5
2020-07-24 20:38:41 -07:00

364 lines
16 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/tf2xla/kernels/if_op.h"
#include "tensorflow/compiler/tf2xla/const_analysis.h"
#include "tensorflow/compiler/tf2xla/kernels/if_while_utils.h"
#include "tensorflow/compiler/tf2xla/shape_util.h"
#include "tensorflow/compiler/tf2xla/side_effect_util.h"
#include "tensorflow/compiler/tf2xla/xla_context.h"
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
namespace tensorflow {
XlaIfOp::XlaIfOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {
const NameAttrList* name_attr;
OP_REQUIRES_OK(ctx, ctx->GetAttr("then_branch", &name_attr));
then_branch_ = *name_attr;
OP_REQUIRES_OK(ctx, ctx->GetAttr("else_branch", &name_attr));
else_branch_ = *name_attr;
OP_REQUIRES_OK(ctx, ctx->GetAttr("Tcond", &cond_type_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("Tin", &input_types_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("Tout", &output_types_));
if (!ctx->GetAttr(kXlaTokenInputNodesAttrName, &token_input_nodes_).ok()) {
has_token_input_output_ = false;
} else {
has_token_input_output_ = !token_input_nodes_.empty();
}
if (ctx->HasAttr(kPropagateCompileTimeConsts)) {
OP_REQUIRES_OK(ctx, ctx->GetAttr(kPropagateCompileTimeConsts,
&propagate_compile_time_consts_));
}
}
// Populates tensor array gradients for compiled branches, returns whether the
// set of found tensor array gradients is non-empty.
static xla::StatusOr<bool> PopulateTensorArrayGradients(
XlaOpKernelContext* ctx, xla::XlaBuilder* b,
absl::Span<XlaCompiler::Argument> arguments,
XlaCompiler::CompilationResult* then_result,
XlaCompiler::CompilationResult* else_result) {
bool has_tensor_array_gradients = false;
for (XlaCompiler::CompilationResult* result : {then_result, else_result}) {
for (const XlaCompiler::ResourceUpdate& update : result->resource_updates) {
XlaResource* resource;
TF_RETURN_IF_ERROR(
ctx->GetResourceInput(update.input_index + 1, &resource));
XlaCompiler::Argument& arg = arguments[update.input_index];
// Add any TensorArray gradients touched by the then/else computation to
// the enclosing graph.
for (const string& grad_source : update.tensor_array_gradients_accessed) {
VLOG(5) << "TensorArray " << resource->name() << " accessed gradient "
<< grad_source;
XlaResource* gradient;
TF_RETURN_IF_ERROR(resource->GetOrCreateTensorArrayGradient(
grad_source, b, &gradient));
}
// Add all of the TensorArray gradients to the argument. For simplicity,
// we always pass all known gradients.
for (const auto& gradient : resource->tensor_array_gradients()) {
arg.tensor_array_gradients.insert(gradient.first);
}
if (!resource->tensor_array_gradients().empty())
has_tensor_array_gradients = true;
}
}
return has_tensor_array_gradients;
}
// Checks that shapes matches on both sides of the conditional.
static Status ValidateShapes(
XlaOpKernelContext* ctx, const XlaCompiler::CompilationResult& then_result,
const XlaCompiler::CompilationResult& else_result) {
// Check that both branches have identical input shapes.
if (then_result.xla_input_shapes.size() != 1) {
return errors::FailedPrecondition("Expected one input shape");
}
xla::Shape then_input_shape = then_result.xla_input_shapes[0];
if (!then_input_shape.IsTuple()) {
return errors::FailedPrecondition("Expected tuple shape");
}
if (else_result.xla_input_shapes.size() != 1) {
return errors::FailedPrecondition("Expected one input shape");
}
xla::Shape else_input_shape = else_result.xla_input_shapes[0];
if (!else_input_shape.IsTuple()) {
return errors::FailedPrecondition("Expected tuple shape");
}
if (!xla::ShapeUtil::Compatible(then_input_shape, else_input_shape)) {
return errors::InvalidArgument(
"Input shapes of then and else branches do not match: ",
xla::ShapeUtil::HumanString(then_input_shape), " vs. ",
xla::ShapeUtil::HumanString(else_input_shape));
}
// Check that both branches have identical output shapes.
if (!xla::ShapeUtil::Compatible(then_result.xla_output_shape,
else_result.xla_output_shape)) {
return errors::InvalidArgument(
"Output shapes of then and else branches do not match: ",
xla::ShapeUtil::HumanString(then_result.xla_output_shape), " vs. ",
xla::ShapeUtil::HumanString(else_result.xla_output_shape));
}
// Check that both branches have same TensorList output indices.
for (int output_index = 0; output_index < then_result.outputs.size();
output_index++) {
bool is_tensor_list_in_then_branch =
then_result.outputs[output_index].is_tensor_list;
bool is_tensor_list_in_else_branch =
else_result.outputs[output_index].is_tensor_list;
if (is_tensor_list_in_then_branch != is_tensor_list_in_else_branch) {
return errors::FailedPrecondition(
"Output #", output_index, " is ",
(is_tensor_list_in_then_branch ? "" : "not"),
" a TensorList in then branch, but is ",
(is_tensor_list_in_else_branch ? "" : "not"),
" a TensorList in else branch");
}
}
VLOG(2) << "Input shape: " << xla::ShapeUtil::HumanString(then_input_shape);
VLOG(2) << "Output shape: "
<< xla::ShapeUtil::HumanString(then_result.xla_output_shape);
// We set return_updated_values_for_all_resources=true and we pass the same
// arguments to both computations, so the resource update count must match.
if (then_result.resource_updates.size() !=
else_result.resource_updates.size()) {
return errors::FailedPrecondition(
"Different number of resources in then and else branch");
}
for (int i = 0; i < then_result.resource_updates.size(); ++i) {
const auto& lhs = then_result.resource_updates[i];
const auto& rhs = else_result.resource_updates[i];
bool equal = lhs.input_index == rhs.input_index && lhs.shape == rhs.shape &&
lhs.tensor_array_gradients_accessed ==
rhs.tensor_array_gradients_accessed;
if (!equal) {
return errors::FailedPrecondition(
"Mismatch in resource of then and else branch for resource ", i);
}
}
return Status::OK();
}
// TODO(b/35949885): There is duplication here with the handling of the
// while_op. Refactor the common code out/rework.
void XlaIfOp::Compile(XlaOpKernelContext* ctx) {
xla::XlaBuilder* b = ctx->builder();
OP_REQUIRES(ctx, cond_type_ == DT_BOOL,
errors::InvalidArgument(
"Condition argument must be a boolean for XLA compilation"));
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(ctx->InputShape(0)),
errors::InvalidArgument(
"Condition argument must be a scalar for XLA compilation"));
VLOG(1) << "Building If: " << input_types_.size() << " inputs";
std::vector<XlaCompiler::Argument> arguments(input_types_.size());
int num_resource_args = 0;
for (int i = 0; i < input_types_.size(); ++i) {
XlaCompiler::Argument& arg = arguments[i];
DataType type = ctx->input_type(i + 1);
if (type == DT_RESOURCE) {
XlaResource* resource;
OP_REQUIRES_OK(ctx, ctx->GetResourceInput(i + 1, &resource));
XlaCompiler::PopulateArgumentFromResource(*resource, &arg);
OP_REQUIRES(ctx, arg.initialized,
errors::Unimplemented("Uninitialized arguments: ", arg.name));
VLOG(2) << "Resource " << resource->name()
<< " type: " << DataTypeString(arg.type)
<< " shape: " << arg.HumanString()
<< " initialized: " << arg.initialized;
num_resource_args++;
} else {
arg.kind = XlaCompiler::Argument::kParameter;
arg.type = input_types_[i];
// Use the xla::Shape for the input instead of ctx->InputShape. This is
// necessary for forwarding shapes of DT_VARIANTs, e.g. TensorLists.
auto shape_or = ctx->builder()->GetShape(ctx->Input(i + 1));
OP_REQUIRES_OK(ctx, shape_or.status());
arg.shape = shape_or.ValueOrDie();
VLOG(2) << "Arg type: " << DataTypeString(arg.type)
<< " shape: " << arg.HumanString();
}
}
if (propagate_compile_time_consts_) {
std::vector<bool> then_branch_must_be_const_nodes;
const FunctionBody* then_body;
std::vector<bool> else_branch_must_be_const_nodes;
const FunctionBody* else_body;
OP_REQUIRES_OK(ctx, FindMustBeConstNodes(ctx, then_branch_,
&then_branch_must_be_const_nodes,
&then_body));
OP_REQUIRES_OK(ctx, FindMustBeConstNodes(ctx, then_branch_,
&else_branch_must_be_const_nodes,
&else_body));
auto should_resolve_const = [&](int arg_idx) {
XlaCompiler::Argument& arg = arguments[arg_idx];
return arg.kind == XlaCompiler::Argument::kParameter &&
(then_branch_must_be_const_nodes[then_body->arg_nodes[arg_idx]
->id()] ||
else_branch_must_be_const_nodes[else_body->arg_nodes[arg_idx]
->id()]);
};
// Replaces `kParameter` type args in `arguments` with `kConstant` if
// the op input corresponding to that arg is a compile-time const. This
// is necessary to propagate compile time consts to ops in the branch
// functions.
ConvertCompileTimeConstArgumentsToConst(ctx, &arguments,
/*xla_expression_offset=*/1,
should_resolve_const);
}
// Compile both branches of the conditional.
XlaCompiler::CompileOptions options;
options.use_tuple_arg = true;
options.return_updated_values_for_all_resources = true;
options.is_entry_computation = false;
options.add_token_input_output = has_token_input_output_;
XlaCompiler* compiler = ctx->compiler();
XlaCompiler::CompilationResult then_result;
OP_REQUIRES_OK(ctx, compiler->CompileFunction(options, then_branch_,
arguments, &then_result));
XlaCompiler::CompilationResult else_result;
OP_REQUIRES_OK(ctx, compiler->CompileFunction(options, else_branch_,
arguments, &else_result));
xla::StatusOr<bool> has_tensor_array_gradients = PopulateTensorArrayGradients(
ctx, b, absl::MakeSpan(arguments), &then_result, &else_result);
OP_REQUIRES_OK(ctx, has_tensor_array_gradients.status());
// Recompile the functions to update the argument shapes for tensor arrays.
if (*has_tensor_array_gradients) {
then_result = {};
OP_REQUIRES_OK(ctx, compiler->CompileFunction(options, then_branch_,
arguments, &then_result));
else_result = {};
OP_REQUIRES_OK(ctx, compiler->CompileFunction(options, else_branch_,
arguments, &else_result));
}
OP_REQUIRES_OK(ctx, ValidateShapes(ctx, then_result, else_result));
int num_inputs = then_result.input_mapping.size();
std::vector<xla::XlaOp> inputs(num_inputs);
for (int i = 0; i < num_inputs; ++i) {
int input_num = then_result.input_mapping[i] + 1;
if (has_token_input_output_ && i == num_inputs - 1) {
// Set token input for this "if" op.
std::vector<xla::XlaOp> token_inputs;
for (const string& node_name : token_input_nodes_) {
auto token_or = compiler->GetNodeToken(node_name);
OP_REQUIRES_OK(ctx, token_or.status());
token_inputs.push_back(token_or.ValueOrDie());
}
inputs[i] = xla::AfterAll(b, token_inputs);
} else if (ctx->input_type(input_num) == DT_RESOURCE) {
XlaResource* resource;
OP_REQUIRES_OK(ctx, ctx->GetResourceInput(input_num, &resource));
OP_REQUIRES_OK(ctx, resource->Pack(&inputs[i], b));
} else {
inputs[i] = ctx->Input(input_num);
}
}
xla::XlaOp input_tuple = xla::Tuple(b, inputs);
xla::XlaOp outputs =
xla::Conditional(ctx->Input(0), input_tuple, *then_result.computation,
input_tuple, *else_result.computation);
// Sets non-variable outputs.
for (int i = 0; i < output_types_.size(); ++i) {
xla::XlaOp output_handle = xla::GetTupleElement(outputs, i);
if (VLOG_IS_ON(2)) {
xla::StatusOr<xla::Shape> shape = b->GetShape(output_handle);
VLOG(2) << "Setting output " << i << " with shape "
<< (shape.ok() ? shape->ToString() : "<unknown>");
}
// We have checked that both branches have same TensorList output indices.
if (then_result.outputs[i].is_tensor_list) {
ctx->SetTensorListOutput(i, output_handle);
} else {
ctx->SetOutput(i, output_handle);
}
}
if (has_token_input_output_) {
// Set token output for this "If" op. Token output is the last output of
// XLA computation, which comes after all "normal" TF outputs and resource
// updates. For "If" node, num of resource updates equals to number of
// resource args because we set `return_updated_values_for_all_resources`
// to true in XlaCompiler option.
xla::XlaOp token_output =
xla::GetTupleElement(outputs, output_types_.size() + num_resource_args);
auto shape_or = b->GetShape(token_output);
OP_REQUIRES_OK(ctx, shape_or.status());
OP_REQUIRES(ctx, shape_or.ValueOrDie().IsToken(),
errors::FailedPrecondition(
"Token output is not token type: ",
xla::ShapeUtil::HumanString(shape_or.ValueOrDie())));
OP_REQUIRES_OK(ctx, compiler->SetNodeToken(name(), token_output));
}
// Updates the values of any resource variables modified by the conditional
// bodies.
for (XlaCompiler::CompilationResult* result : {&then_result, &else_result}) {
for (int i = 0; i < result->resource_updates.size(); ++i) {
const XlaCompiler::ResourceUpdate& update = result->resource_updates[i];
XlaResource* resource;
OP_REQUIRES_OK(ctx,
ctx->GetResourceInput(update.input_index + 1, &resource));
if (update.modified) {
int pos = result->outputs.size() + i;
OP_REQUIRES_OK(ctx,
resource->SetFromPack(
arguments[update.input_index].tensor_array_gradients,
xla::GetTupleElement(outputs, pos), b));
}
VLOG(2) << "If variable: pos: " << update.input_index
<< " name: " << resource->name()
<< " modified: " << update.modified
<< " type: " << DataTypeString(update.type)
<< " shape: " << update.shape.DebugString();
}
}
VLOG(1) << "Done building If";
}
REGISTER_XLA_OP(Name("If").AllowResourceTypes().AllowVariantTypes(), XlaIfOp);
REGISTER_XLA_OP(Name("StatelessIf").AllowResourceTypes().AllowVariantTypes(),
XlaIfOp);
REGISTER_XLA_OP(Name("XlaIf").AllowResourceTypes().AllowVariantTypes(),
XlaIfOp);
} // namespace tensorflow