STT-tensorflow/tensorflow/compiler/tf2xla/const_analysis_test.cc
George Karpenkov 68016e2697 Rollback of rollback of disabling XLA:CPU/GPU devices by default.
PiperOrigin-RevId: 326084520
Change-Id: Id537bc29ac9d4c4c3c8fe7533e8d4151adb4cadf
2020-08-11 13:06:59 -07:00

228 lines
8.5 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Tests for the backward const analysis.
#include "tensorflow/compiler/tf2xla/const_analysis.h"
#include "tensorflow/cc/framework/ops.h"
#include "tensorflow/cc/ops/function_ops.h"
#include "tensorflow/cc/ops/functional_ops.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/compiler/jit/flags.h"
#include "tensorflow/compiler/jit/xla_cluster_util.h"
#include "tensorflow/core/common_runtime/process_function_library_runtime.h"
#include "tensorflow/core/graph/algorithm.h"
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/public/version.h"
namespace tensorflow {
namespace {
TEST(ConstAnalysisTest, Basics) {
Scope root = Scope::NewRootScope();
auto arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0);
auto arg1 = ops::_Arg(root.WithOpName("Arg1"), DT_INT32, 1);
auto arg2 = ops::_Arg(root.WithOpName("Arg2"), DT_INT32, 2);
auto arg3 = ops::_Arg(root.WithOpName("Arg3"), DT_INT32, 3);
auto a = ops::Shape(root, arg0);
auto b = ops::Add(root, a, arg1);
auto c = ops::Reshape(root, arg2, b);
auto d = ops::Mul(root, c, ops::Sum(root, arg3, arg3));
FixupSourceAndSinkEdges(root.graph());
std::vector<bool> const_args(4, false);
std::vector<bool> const_nodes(root.graph()->num_node_ids(), false);
TF_ASSERT_OK(BackwardsConstAnalysis(*root.graph(), &const_args, &const_nodes,
/*flib_runtime=*/nullptr));
// Arg 0 doesn't need to be constant since the graph only uses its shape.
// Arg 1 must be constant because it flows to the shape argument of a Reshape.
// Arg 2 is used only as the value input to a Reshape and need not be const.
// Arg 3 is used as the reduction-indices argument to Sum and must be const.
EXPECT_EQ(const_args, std::vector<bool>({false, true, false, true}));
EXPECT_FALSE(const_nodes[arg0.node()->id()]);
EXPECT_TRUE(const_nodes[arg1.node()->id()]);
EXPECT_FALSE(const_nodes[arg2.node()->id()]);
EXPECT_TRUE(const_nodes[arg3.node()->id()]);
}
// Regression test for a case where the backward const analysis did
// not visit nodes in topological order.
TEST(ConstAnalysisTest, TopologicalOrder) {
for (bool order : {false, true}) {
Scope root = Scope::NewRootScope();
auto arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0);
auto arg1 = ops::_Arg(root.WithOpName("Arg1"), DT_INT32, 1);
auto arg2 = ops::_Arg(root.WithOpName("Arg2"), DT_INT32, 2);
auto a = ops::Reshape(root, arg0, arg1);
auto b = ops::Reshape(root, arg2, a);
if (order) {
// Consider both orders for arguments to the Sum so we aren't sensitive
// to the DFS traversal order.
std::swap(a, b);
}
auto c = ops::Add(root, a, b);
Graph graph(OpRegistry::Global());
TF_ASSERT_OK(root.ToGraph(&graph));
std::vector<bool> const_args(3, false);
TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args,
/*compile_time_const_nodes=*/nullptr,
/*flib_runtime=*/nullptr));
EXPECT_EQ(const_args, std::vector<bool>({true, true, false}));
}
}
void TestFunctionCall(bool is_stateful_partitioned_call) {
FunctionDef callee = FunctionDefHelper::Define(
"Callee", {"t:float", "shape:int32"}, {"result:float"}, {},
{{{"result"}, "Reshape", {"t", "shape"}, {{"T", DT_FLOAT}}}});
FunctionDefLibrary flib;
*flib.add_function() = callee;
FunctionLibraryDefinition flib_def(OpRegistry::Global(), flib);
Scope root = Scope::NewRootScope().ExitOnError();
auto arg0 = ops::_Arg(root.WithOpName("tensor"), DT_FLOAT, 0);
auto arg1 = ops::_Arg(root.WithOpName("shape"), DT_INT32, 1);
NameAttrList call_attrs;
call_attrs.set_name("Callee");
if (is_stateful_partitioned_call) {
ops::StatefulPartitionedCall b(root.WithOpName("Call"),
{Output(arg0), Output(arg1)}, {DT_FLOAT},
call_attrs);
} else {
ops::PartitionedCall b(root.WithOpName("Call"),
{Output(arg0), Output(arg1)}, {DT_FLOAT},
call_attrs);
}
Graph graph(&flib_def);
TF_ASSERT_OK(root.ToGraph(&graph));
OptimizerOptions opts;
std::unique_ptr<ProcessFunctionLibraryRuntime> pflr(
new ProcessFunctionLibraryRuntime(nullptr, Env::Default(),
/*config=*/nullptr,
TF_GRAPH_DEF_VERSION, &flib_def, opts));
FunctionLibraryRuntime* lib_runtime =
pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice);
std::vector<bool> const_args(2, false);
TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args,
/*compile_time_const_nodes=*/nullptr,
lib_runtime));
EXPECT_EQ(const_args, std::vector<bool>({false, true}));
}
TEST(ConstAnalysisTest, PartitionedCall) {
TestFunctionCall(/*is_stateful_partitioned_call=*/false);
}
TEST(ConstAnalysisTest, StatefulPartitionedCall) {
TestFunctionCall(/*is_stateful_partitioned_call=*/true);
}
TEST(ConstAnalysisTest, DontFollowControlDependencies) {
Scope root = Scope::NewRootScope();
Output arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0);
Output arg1 = ops::_Arg(root.WithOpName("Arg1"), DT_INT32, 1);
Output c1 =
ops::Const(root.WithOpName("c1").WithControlDependencies(arg0), 1, {1});
Output add = ops::Add(root, arg1, c1);
Output reshape = ops::Reshape(root, arg1, add);
Graph graph(OpRegistry::Global());
TF_ASSERT_OK(root.ToGraph(&graph));
std::vector<bool> const_args(2, false);
TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args,
/*compile_time_const_nodes=*/nullptr,
/*flib_runtime=*/nullptr));
EXPECT_EQ(const_args, std::vector<bool>({false, true}));
}
TEST(ConstAnalysisTest, RespectExplicitAttr_0) {
Scope root = Scope::NewRootScope();
Output arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0);
Output arg1 = ops::_Arg(root.WithOpName("Arg1"), DT_INT32, 1);
Output c1 =
ops::Const(root.WithOpName("c1").WithControlDependencies(arg0), 1, {1});
Output add = ops::Add(root, arg1, c1);
// Force const analysis to pretend that the shape argument to `reshape` does
// not need to be a constant.
Output reshape = ops::Reshape(root, arg1, add);
reshape.node()->AddAttr(kXlaCompileTimeConstantInputsAttr,
std::vector<string>());
Graph graph(OpRegistry::Global());
TF_ASSERT_OK(root.ToGraph(&graph));
std::vector<bool> const_args(2, false);
TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args,
/*compile_time_const_nodes=*/nullptr,
/*flib_runtime=*/nullptr));
EXPECT_EQ(const_args, std::vector<bool>({false, false}));
}
TEST(ConstAnalysisTest, RespectExplicitAttr_1) {
Scope root = Scope::NewRootScope();
Output arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0);
Output c1 =
ops::Const(root.WithOpName("c1").WithControlDependencies(arg0), 1, {1});
Output add = ops::Add(root, arg0, c1);
// Force const analysis to pretend that the first argument to `add` needs to
// be a constant.
std::vector<string> add_constant_inputs;
add_constant_inputs.push_back("x");
add.node()->AddAttr(kXlaCompileTimeConstantInputsAttr, add_constant_inputs);
Graph graph(OpRegistry::Global());
TF_ASSERT_OK(root.ToGraph(&graph));
std::vector<bool> const_args(1, false);
TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args,
/*compile_time_const_nodes=*/nullptr,
/*flib_runtime=*/nullptr));
EXPECT_EQ(const_args, std::vector<bool>({true}));
}
static bool Initialized = [] {
tensorflow::GetXlaDeviceFlags()->tf_xla_enable_xla_devices = true;
return true;
}();
} // namespace
} // namespace tensorflow