When a TF-TRT converted graph with static cuda engines is executed, we call the TensorRT runtime to deserialize cuda engines without initializing the TensorRT plugin registry. This causes TensorRT runtime failure when the cuda engines contain plugins. Move InitializeTrtPlugins to common/utils.cc and replace the use of mutex with absl::call_once. PiperOrigin-RevId: 327679056 Change-Id: I5e50a01aa06f3b5a22a3114a2c54e3712461bd6b
100 lines
3.1 KiB
C++
100 lines
3.1 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/compiler/tf2tensorrt/common/utils.h"
|
|
|
|
#if GOOGLE_CUDA && GOOGLE_TENSORRT
|
|
#include "absl/base/call_once.h"
|
|
#include "absl/strings/str_join.h"
|
|
#include "third_party/tensorrt/NvInferPlugin.h"
|
|
#endif
|
|
|
|
namespace tensorflow {
|
|
namespace tensorrt {
|
|
|
|
std::tuple<int, int, int> GetLinkedTensorRTVersion() {
|
|
#if GOOGLE_CUDA && GOOGLE_TENSORRT
|
|
return std::tuple<int, int, int>{NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR,
|
|
NV_TENSORRT_PATCH};
|
|
#else
|
|
return std::tuple<int, int, int>{0, 0, 0};
|
|
#endif
|
|
}
|
|
|
|
std::tuple<int, int, int> GetLoadedTensorRTVersion() {
|
|
#if GOOGLE_CUDA && GOOGLE_TENSORRT
|
|
int ver = getInferLibVersion();
|
|
int major = ver / 1000;
|
|
ver = ver - major * 1000;
|
|
int minor = ver / 100;
|
|
int patch = ver - minor * 100;
|
|
return std::tuple<int, int, int>{major, minor, patch};
|
|
#else
|
|
return std::tuple<int, int, int>{0, 0, 0};
|
|
#endif
|
|
}
|
|
|
|
} // namespace tensorrt
|
|
} // namespace tensorflow
|
|
|
|
#if GOOGLE_CUDA && GOOGLE_TENSORRT
|
|
namespace tensorflow {
|
|
namespace tensorrt {
|
|
namespace {
|
|
|
|
void InitializeTrtPlugins(nvinfer1::ILogger* trt_logger) {
|
|
LOG(INFO) << "Linked TensorRT version: "
|
|
<< absl::StrJoin(GetLinkedTensorRTVersion(), ".");
|
|
LOG(INFO) << "Loaded TensorRT version: "
|
|
<< absl::StrJoin(GetLoadedTensorRTVersion(), ".");
|
|
|
|
bool plugin_initialized = initLibNvInferPlugins(trt_logger, "");
|
|
if (!plugin_initialized) {
|
|
LOG(ERROR) << "Failed to initialize TensorRT plugins, and conversion may "
|
|
"fail later.";
|
|
}
|
|
|
|
int num_trt_plugins = 0;
|
|
nvinfer1::IPluginCreator* const* trt_plugin_creator_list =
|
|
getPluginRegistry()->getPluginCreatorList(&num_trt_plugins);
|
|
if (!trt_plugin_creator_list) {
|
|
LOG_WARNING_WITH_PREFIX << "Can not find any TensorRT plugins in registry.";
|
|
} else {
|
|
VLOG(1) << "Found the following " << num_trt_plugins
|
|
<< " TensorRT plugins in registry:";
|
|
for (int i = 0; i < num_trt_plugins; ++i) {
|
|
if (!trt_plugin_creator_list[i]) {
|
|
LOG_WARNING_WITH_PREFIX
|
|
<< "TensorRT plugin at index " << i
|
|
<< " is not accessible (null pointer returned by "
|
|
"getPluginCreatorList for this plugin)";
|
|
} else {
|
|
VLOG(1) << " " << trt_plugin_creator_list[i]->getPluginName();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void MaybeInitializeTrtPlugins(nvinfer1::ILogger* trt_logger) {
|
|
static absl::once_flag once;
|
|
absl::call_once(once, InitializeTrtPlugins, trt_logger);
|
|
}
|
|
|
|
} // namespace tensorrt
|
|
} // namespace tensorflow
|
|
#endif
|