STT-tensorflow/tensorflow/compiler/tf2tensorrt/common/utils.cc
Bixia Zheng dcf4c4f58b [TF:TRT] Initialize TensorRT plugin registry before deserializing cuda engines.
When a TF-TRT converted graph with static cuda engines is executed, we call the
TensorRT runtime to deserialize cuda engines without initializing the TensorRT
plugin registry. This causes TensorRT runtime failure when the cuda engines
contain plugins.

Move InitializeTrtPlugins to common/utils.cc and replace the use of mutex with
absl::call_once.
PiperOrigin-RevId: 327679056
Change-Id: I5e50a01aa06f3b5a22a3114a2c54e3712461bd6b
2020-08-20 12:49:47 -07:00

100 lines
3.1 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/tf2tensorrt/common/utils.h"
#if GOOGLE_CUDA && GOOGLE_TENSORRT
#include "absl/base/call_once.h"
#include "absl/strings/str_join.h"
#include "third_party/tensorrt/NvInferPlugin.h"
#endif
namespace tensorflow {
namespace tensorrt {
std::tuple<int, int, int> GetLinkedTensorRTVersion() {
#if GOOGLE_CUDA && GOOGLE_TENSORRT
return std::tuple<int, int, int>{NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR,
NV_TENSORRT_PATCH};
#else
return std::tuple<int, int, int>{0, 0, 0};
#endif
}
std::tuple<int, int, int> GetLoadedTensorRTVersion() {
#if GOOGLE_CUDA && GOOGLE_TENSORRT
int ver = getInferLibVersion();
int major = ver / 1000;
ver = ver - major * 1000;
int minor = ver / 100;
int patch = ver - minor * 100;
return std::tuple<int, int, int>{major, minor, patch};
#else
return std::tuple<int, int, int>{0, 0, 0};
#endif
}
} // namespace tensorrt
} // namespace tensorflow
#if GOOGLE_CUDA && GOOGLE_TENSORRT
namespace tensorflow {
namespace tensorrt {
namespace {
void InitializeTrtPlugins(nvinfer1::ILogger* trt_logger) {
LOG(INFO) << "Linked TensorRT version: "
<< absl::StrJoin(GetLinkedTensorRTVersion(), ".");
LOG(INFO) << "Loaded TensorRT version: "
<< absl::StrJoin(GetLoadedTensorRTVersion(), ".");
bool plugin_initialized = initLibNvInferPlugins(trt_logger, "");
if (!plugin_initialized) {
LOG(ERROR) << "Failed to initialize TensorRT plugins, and conversion may "
"fail later.";
}
int num_trt_plugins = 0;
nvinfer1::IPluginCreator* const* trt_plugin_creator_list =
getPluginRegistry()->getPluginCreatorList(&num_trt_plugins);
if (!trt_plugin_creator_list) {
LOG_WARNING_WITH_PREFIX << "Can not find any TensorRT plugins in registry.";
} else {
VLOG(1) << "Found the following " << num_trt_plugins
<< " TensorRT plugins in registry:";
for (int i = 0; i < num_trt_plugins; ++i) {
if (!trt_plugin_creator_list[i]) {
LOG_WARNING_WITH_PREFIX
<< "TensorRT plugin at index " << i
<< " is not accessible (null pointer returned by "
"getPluginCreatorList for this plugin)";
} else {
VLOG(1) << " " << trt_plugin_creator_list[i]->getPluginName();
}
}
}
}
} // namespace
void MaybeInitializeTrtPlugins(nvinfer1::ILogger* trt_logger) {
static absl::once_flag once;
absl::call_once(once, InitializeTrtPlugins, trt_logger);
}
} // namespace tensorrt
} // namespace tensorflow
#endif