BetaincOp DepthwiseConv2dNativeBackpropFilterOp DepthwiseConv2dNativeBackpropInputOp ExtractImagePatchesOp IgammaOp IgammacOp IgammaGradOp ListDiffOp LowerBoundOp MatrixInverseOp MatrixSolveOp RollOp UpperBoundOp PiperOrigin-RevId: 327096174 Change-Id: I64e6921ed605b294f1c73ad0030b021580b66ba1
269 lines
9.5 KiB
Python
269 lines
9.5 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Test cases for ternary operators."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
import scipy.special as sps
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gen_math_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
class TernaryOpsTest(xla_test.XLATestCase, parameterized.TestCase):
|
|
|
|
def _testTernary(self, op, a, b, c, expected, rtol=1e-3, atol=1e-6):
|
|
with self.session() as session:
|
|
with self.test_scope():
|
|
pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a")
|
|
pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name="b")
|
|
pc = array_ops.placeholder(dtypes.as_dtype(c.dtype), c.shape, name="c")
|
|
output = op(pa, pb, pc)
|
|
result = session.run(output, {pa: a, pb: b, pc: c})
|
|
self.assertAllClose(result, expected, rtol=rtol, atol=atol)
|
|
return result
|
|
|
|
@parameterized.parameters(
|
|
{'start': 1, 'end': 2, 'num': 1},
|
|
{'start': 1, 'end': 4, 'num': 3},
|
|
{'start': 0, 'end': 41, 'num': 42})
|
|
@test_util.disable_mlir_bridge(
|
|
'TODO(b/156174708): Dynamic result types not supported')
|
|
def testLinspace(self, start, end, num):
|
|
expected = np.linspace(start, end, num, dtype=np.float32)
|
|
result = self._testTernary(
|
|
math_ops.linspace,
|
|
np.float32(start),
|
|
np.float32(end),
|
|
np.int32(num),
|
|
expected)
|
|
# According to linspace spec, start has to be the first element and end has
|
|
# to be last element.
|
|
self.assertEqual(result[-1], expected[-1])
|
|
self.assertEqual(result[0], expected[0])
|
|
|
|
def testRange(self):
|
|
self._testTernary(
|
|
math_ops.range,
|
|
np.int32(1),
|
|
np.int32(2),
|
|
np.int32(1),
|
|
expected=np.array([1], dtype=np.int32))
|
|
self._testTernary(
|
|
math_ops.range,
|
|
np.int32(1),
|
|
np.int32(7),
|
|
np.int32(2),
|
|
expected=np.array([1, 3, 5], dtype=np.int32))
|
|
|
|
def testSelect(self):
|
|
for dtype in self.numeric_types:
|
|
self._testTernary(
|
|
array_ops.where,
|
|
np.array(False),
|
|
np.array(2, dtype=dtype),
|
|
np.array(7, dtype=dtype),
|
|
expected=np.array(7, dtype=dtype))
|
|
|
|
self._testTernary(
|
|
array_ops.where,
|
|
np.array(True),
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
np.array([5, 6, 7, 8], dtype=dtype),
|
|
expected=np.array([1, 2, 3, 4], dtype=dtype))
|
|
|
|
self._testTernary(
|
|
array_ops.where,
|
|
np.array(False),
|
|
np.array([[1, 2], [3, 4], [5, 6]], dtype=dtype),
|
|
np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype),
|
|
expected=np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype))
|
|
|
|
self._testTernary(
|
|
array_ops.where,
|
|
np.array([0, 1, 1, 0], dtype=np.bool),
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
np.array([5, 6, 7, 8], dtype=dtype),
|
|
expected=np.array([5, 2, 3, 8], dtype=dtype))
|
|
|
|
self._testTernary(
|
|
array_ops.where,
|
|
np.array([0, 1, 0], dtype=np.bool),
|
|
np.array([[1, 2], [3, 4], [5, 6]], dtype=dtype),
|
|
np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype),
|
|
expected=np.array([[7, 8], [3, 4], [11, 12]], dtype=dtype))
|
|
|
|
def testSelectV2(self):
|
|
for dtype in self.numeric_types:
|
|
self._testTernary(
|
|
array_ops.where_v2,
|
|
np.array(False),
|
|
np.array(2, dtype=dtype),
|
|
np.array(7, dtype=dtype),
|
|
expected=np.array(7, dtype=dtype))
|
|
|
|
self._testTernary(
|
|
array_ops.where_v2,
|
|
np.array(True),
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
np.array([5, 6, 7, 8], dtype=dtype),
|
|
expected=np.array([1, 2, 3, 4], dtype=dtype))
|
|
|
|
self._testTernary(
|
|
array_ops.where_v2,
|
|
np.array(False),
|
|
np.array([[1, 2], [3, 4], [5, 6]], dtype=dtype),
|
|
np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype),
|
|
expected=np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype))
|
|
|
|
self._testTernary(
|
|
array_ops.where_v2,
|
|
np.array([0, 1, 1, 0], dtype=np.bool),
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
np.array([5, 6, 7, 8], dtype=dtype),
|
|
expected=np.array([5, 2, 3, 8], dtype=dtype))
|
|
|
|
# Broadcast the condition
|
|
self._testTernary(
|
|
array_ops.where_v2,
|
|
np.array([0, 1], dtype=np.bool),
|
|
np.array([[1, 2], [3, 4], [5, 6]], dtype=dtype),
|
|
np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype),
|
|
expected=np.array([[7, 2], [9, 4], [11, 6]], dtype=dtype))
|
|
|
|
# Broadcast the then branch to the else
|
|
self._testTernary(
|
|
array_ops.where_v2,
|
|
np.array([[0, 1], [1, 0], [1, 1]], dtype=np.bool),
|
|
np.array([[1, 2]], dtype=dtype),
|
|
np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype),
|
|
expected=np.array([[7, 2], [1, 10], [1, 2]], dtype=dtype))
|
|
|
|
# Broadcast the else branch to the then
|
|
self._testTernary(
|
|
array_ops.where_v2,
|
|
np.array([[1, 0], [0, 1], [0, 0]], dtype=np.bool),
|
|
np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype),
|
|
np.array([[1, 2]], dtype=dtype),
|
|
expected=np.array([[7, 2], [1, 10], [1, 2]], dtype=dtype))
|
|
|
|
# Broadcast the then/else branches to the condition
|
|
self._testTernary(
|
|
array_ops.where_v2,
|
|
np.array([[1, 0], [0, 1], [1, 1]], dtype=np.bool),
|
|
np.array(7, dtype=dtype),
|
|
np.array(8, dtype=dtype),
|
|
expected=np.array([[7, 8], [8, 7], [7, 7]], dtype=dtype))
|
|
self._testTernary(
|
|
array_ops.where_v2,
|
|
np.array([[1, 0], [0, 1], [0, 0]], dtype=np.bool),
|
|
np.array(7, dtype=dtype),
|
|
np.array([8, 9], dtype=dtype),
|
|
expected=np.array([[7, 9], [8, 7], [8, 9]], dtype=dtype))
|
|
|
|
def testSlice(self):
|
|
for dtype in self.numeric_types:
|
|
self._testTernary(
|
|
array_ops.slice,
|
|
np.array([[], [], []], dtype=dtype),
|
|
np.array([1, 0], dtype=np.int32),
|
|
np.array([2, 0], dtype=np.int32),
|
|
expected=np.array([[], []], dtype=dtype))
|
|
|
|
self._testTernary(
|
|
array_ops.slice,
|
|
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype),
|
|
np.array([0, 1], dtype=np.int32),
|
|
np.array([2, 1], dtype=np.int32),
|
|
expected=np.array([[2], [5]], dtype=dtype))
|
|
|
|
def testClipByValue(self):
|
|
for dtype in self.numeric_types - self.complex_types:
|
|
test_cases = [
|
|
(np.array([2, 4, 5], dtype=dtype), dtype(7)), #
|
|
(dtype(1), np.array([2, 4, 5], dtype=dtype)), #
|
|
(np.array([-2, 7, 7], dtype=dtype), np.array([-2, 9, 8], dtype=dtype))
|
|
]
|
|
x = np.array([-2, 10, 6], dtype=dtype)
|
|
for lower, upper in test_cases:
|
|
self._testTernary(
|
|
gen_math_ops._clip_by_value,
|
|
x,
|
|
lower,
|
|
upper,
|
|
expected=np.minimum(np.maximum(x, lower), upper))
|
|
|
|
def testBetaincSanity(self):
|
|
# This operation is only supported for float32 and float64.
|
|
for dtype in self.numeric_types & {np.float32, np.float64}:
|
|
# Sanity check a few identities:
|
|
# - betainc(a, b, 0) == 0
|
|
# - betainc(a, b, 1) == 1
|
|
# - betainc(a, 1, x) == x ** a
|
|
# Compare against the implementation in SciPy.
|
|
a = np.array([.3, .4, .2, .2], dtype=dtype)
|
|
b = np.array([1., 1., .4, .4], dtype=dtype)
|
|
x = np.array([.3, .4, .0, .1], dtype=dtype)
|
|
expected = sps.betainc(a, b, x)
|
|
self._testTernary(
|
|
math_ops.betainc, a, b, x, expected, rtol=5e-6, atol=6e-6)
|
|
|
|
@parameterized.parameters(
|
|
{
|
|
'sigma': 1e15,
|
|
'rtol': 1e-6,
|
|
'atol': 1e-4
|
|
},
|
|
{
|
|
'sigma': 30,
|
|
'rtol': 1e-6,
|
|
'atol': 2e-3
|
|
},
|
|
{
|
|
'sigma': 1e-8,
|
|
'rtol': 5e-4,
|
|
'atol': 3e-4
|
|
},
|
|
{
|
|
'sigma': 1e-16,
|
|
'rtol': 1e-6,
|
|
'atol': 2e-4
|
|
},
|
|
)
|
|
def testBetainc(self, sigma, rtol, atol):
|
|
# This operation is only supported for float32 and float64.
|
|
for dtype in self.numeric_types & {np.float32, np.float64}:
|
|
# Randomly generate a, b, x in the numerical domain of betainc.
|
|
# Compare against the implementation in SciPy.
|
|
a = np.abs(np.random.randn(10, 10) * sigma).astype(dtype) # in (0, infty)
|
|
b = np.abs(np.random.randn(10, 10) * sigma).astype(dtype) # in (0, infty)
|
|
x = np.random.rand(10, 10).astype(dtype) # in (0, 1)
|
|
expected = sps.betainc(a, b, x, dtype=dtype)
|
|
self._testTernary(
|
|
math_ops.betainc, a, b, x, expected, rtol=rtol, atol=atol)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|