Also, add verifier for Cumsum op to reject illegal axis value. GetScalarConstOfType doesn't support non int and float element types so reject ops with other element types. PiperOrigin-RevId: 326787027 Change-Id: I54afe4e494d711fa873b6329391603fbd8958c88
233 lines
7.7 KiB
Python
233 lines
7.7 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Functional tests for scan ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import errors_impl
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
def numpy_reverse(x, axis):
|
|
length = len(x.shape)
|
|
if axis < 0:
|
|
axis = length + axis
|
|
|
|
ix = [
|
|
slice(None, None, -1) if i == axis else slice(None) for i in range(length)
|
|
]
|
|
return x[ix]
|
|
|
|
|
|
def handle_options(func, x, axis, exclusive, reverse):
|
|
"""Adds tf options to numpy scan ops."""
|
|
length = len(x.shape)
|
|
if axis < 0:
|
|
axis = length + axis
|
|
|
|
if reverse:
|
|
x = numpy_reverse(x, axis)
|
|
|
|
if exclusive:
|
|
ix_head = [slice(0, 1) if i == axis else slice(None) for i in range(length)]
|
|
ix_init = [
|
|
slice(0, -1) if i == axis else slice(None) for i in range(length)
|
|
]
|
|
if func == np.cumsum:
|
|
init = np.zeros_like(x[ix_head])
|
|
elif func == np.cumprod:
|
|
init = np.ones_like(x[ix_head])
|
|
else:
|
|
raise ValueError("Unknown scan function.")
|
|
x = np.concatenate([init, func(x[ix_init], axis)], axis=axis)
|
|
else:
|
|
x = func(x, axis=axis)
|
|
|
|
if reverse:
|
|
x = numpy_reverse(x, axis)
|
|
return x
|
|
|
|
|
|
class CumsumTest(xla_test.XLATestCase):
|
|
|
|
valid_dtypes = [np.float32, np.int32]
|
|
|
|
def axis_dtypes(self):
|
|
return set(self.int_types).intersection([np.int32, np.int64])
|
|
|
|
def _compare(self, x, axis, exclusive, reverse):
|
|
np_out = handle_options(np.cumsum, x, axis, exclusive, reverse)
|
|
with self.session(), self.test_scope():
|
|
p = array_ops.placeholder(x.dtype)
|
|
tf_out = math_ops.cumsum(p, axis, exclusive, reverse).eval(
|
|
feed_dict={p: x})
|
|
|
|
self.assertAllClose(np_out, tf_out)
|
|
|
|
def _compareAll(self, x, axis):
|
|
for exclusive in [True, False]:
|
|
for reverse in [True, False]:
|
|
self._compare(x, axis, exclusive, reverse)
|
|
|
|
def testEmpty(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.zeros([0]).astype(dtype)
|
|
for axis in (-1, 0):
|
|
self._compareAll(x, axis)
|
|
|
|
def testAxisType(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 6).reshape([5]).astype(dtype)
|
|
for axis_dtype in self.axis_dtypes():
|
|
with self.session(), self.test_scope():
|
|
p = array_ops.placeholder(x.dtype)
|
|
axis = constant_op.constant(0, axis_dtype)
|
|
math_ops.cumsum(p, axis).eval(feed_dict={p: x})
|
|
|
|
def test1D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 6).reshape([5]).astype(dtype)
|
|
for axis in (-1, 0):
|
|
self._compareAll(x, axis)
|
|
|
|
def test2D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(0, 10).reshape([2, 5]).astype(dtype)
|
|
for axis in (-2, -1, 0, 1):
|
|
self._compareAll(x, axis)
|
|
|
|
def test3D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(0, 20).reshape([2, 2, 5]).astype(dtype)
|
|
for axis in (-3, -2, -1, 0, 1, 2):
|
|
self._compareAll(x, axis)
|
|
|
|
def test6D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 145).reshape([2, 2, 3, 3, 2, 2]).astype(dtype)
|
|
for axis in range(-6, 6, 3):
|
|
self._compareAll(x, axis)
|
|
|
|
@test_util.disable_mlir_bridge("Error handling")
|
|
def testInvalidAxis(self):
|
|
x = np.arange(0, 10).reshape([2, 5]).astype(np.float32)
|
|
with self.session(), self.test_scope():
|
|
input_tensor = ops.convert_to_tensor(x)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
|
|
math_ops.cumsum(input_tensor, -3).eval()
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
|
|
math_ops.cumsum(input_tensor, 2).eval()
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "axis must be a scalar" in str(e)):
|
|
math_ops.cumsum(input_tensor, [0]).eval()
|
|
|
|
|
|
class CumprodTest(xla_test.XLATestCase):
|
|
|
|
valid_dtypes = [np.float32, np.int32]
|
|
|
|
def axis_dtypes(self):
|
|
return set(self.int_types).intersection([np.int32, np.int64])
|
|
|
|
def _compare(self, x, axis, exclusive, reverse):
|
|
np_out = handle_options(np.cumprod, x, axis, exclusive, reverse)
|
|
with self.session(), self.test_scope():
|
|
p = array_ops.placeholder(x.dtype)
|
|
prod = math_ops.cumprod(p, axis, exclusive, reverse)
|
|
tf_out = prod.eval(feed_dict={p: x})
|
|
|
|
self.assertAllClose(np_out, tf_out)
|
|
|
|
def _compareAll(self, x, axis):
|
|
for exclusive in [True, False]:
|
|
for reverse in [True, False]:
|
|
self._compare(x, axis, exclusive, reverse)
|
|
|
|
def testEmpty(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.zeros([0]).astype(dtype)
|
|
for axis in (-1, 0):
|
|
self._compareAll(x, axis)
|
|
|
|
def testAxisType(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 6).reshape([5]).astype(dtype)
|
|
for axis_dtype in self.axis_dtypes():
|
|
with self.session(), self.test_scope():
|
|
p = array_ops.placeholder(x.dtype)
|
|
axis = constant_op.constant(0, axis_dtype)
|
|
math_ops.cumprod(x, axis).eval(feed_dict={p: x})
|
|
|
|
def test1D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 6).reshape([5]).astype(dtype)
|
|
for axis in (-1, 0):
|
|
self._compareAll(x, axis)
|
|
|
|
def test2D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 11).reshape([2, 5]).astype(dtype)
|
|
for axis in (-2, -1, 0, 1):
|
|
self._compareAll(x, axis)
|
|
|
|
def test3D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 21).reshape([2, 2, 5]).astype(dtype)
|
|
for axis in (-3, -2, -1, 0, 1, 2):
|
|
self._compareAll(x, axis)
|
|
|
|
def test6D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 145).reshape([2, 2, 3, 3, 2, 2]).astype(dtype)
|
|
for axis in range(-6, 6, 3):
|
|
self._compareAll(x, axis)
|
|
|
|
@test_util.disable_mlir_bridge("Error handling")
|
|
def testInvalidAxis(self):
|
|
x = np.arange(0, 10).reshape([2, 5]).astype(np.float32)
|
|
with self.session(), self.test_scope():
|
|
input_tensor = ops.convert_to_tensor(x)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
|
|
math_ops.cumprod(input_tensor, -3).eval()
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
|
|
math_ops.cumprod(input_tensor, 2).eval()
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "axis must be a scalar" in str(e)):
|
|
math_ops.cumprod(input_tensor, [0]).eval()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|