Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/41916 PiperOrigin-RevId: 326343156 Change-Id: I9810a3301570bf5a25e97b3004fe0043f8ee01db
248 lines
9.2 KiB
Python
248 lines
9.2 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for reduction operators."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import functools
|
|
import itertools
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors_impl
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
@parameterized.named_parameters(('32_bit_index', dtypes.int32),
|
|
('64_bit_index', dtypes.int64))
|
|
class ReduceOpsTest(xla_test.XLATestCase, parameterized.TestCase):
|
|
def _testReduction(self,
|
|
tf_reduce_fn,
|
|
np_reduce_fn,
|
|
dtype,
|
|
test_inputs,
|
|
index_dtype,
|
|
rtol=1e-4,
|
|
atol=1e-4):
|
|
"""Tests that the output of 'tf_reduce_fn' matches numpy's output."""
|
|
|
|
for test_input in test_inputs:
|
|
with self.session() as sess:
|
|
with self.test_scope():
|
|
a = array_ops.placeholder(dtype)
|
|
index = array_ops.placeholder(index_dtype)
|
|
out = tf_reduce_fn(a, index)
|
|
result = sess.run(out, {a: test_input, index: [0]})
|
|
self.assertAllClose(
|
|
result, np_reduce_fn(test_input, axis=0), rtol=rtol, atol=atol)
|
|
|
|
result = sess.run(out, {a: test_input, index: [1]})
|
|
self.assertAllClose(
|
|
result, np_reduce_fn(test_input, axis=1), rtol=rtol, atol=atol)
|
|
|
|
result = sess.run(out, {a: test_input, index: [-1]})
|
|
self.assertAllClose(
|
|
result, np_reduce_fn(test_input, axis=1), rtol=rtol, atol=atol)
|
|
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError, 'Invalid reduction dim'):
|
|
sess.run(out, {a: test_input, index: [-33]})
|
|
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError, 'Invalid reduction dim'):
|
|
sess.run(out, {a: test_input, index: [2]})
|
|
|
|
REAL_DATA = [
|
|
np.zeros(shape=(2, 0)),
|
|
np.zeros(shape=(0, 30)),
|
|
np.arange(1, 7).reshape(2, 3),
|
|
np.arange(-10, -4).reshape(2, 3),
|
|
np.arange(-4, 2).reshape(2, 3),
|
|
]
|
|
COMPLEX_DATA = [
|
|
np.zeros(shape=(2, 0)).astype(np.complex64),
|
|
np.zeros(shape=(0, 30)).astype(np.complex64),
|
|
np.arange(1, 13, dtype=np.float32).view(np.complex64).reshape(2, 3),
|
|
np.arange(-14, -2, dtype=np.float32).view(np.complex64).reshape(2, 3),
|
|
np.arange(-4, 8, dtype=np.float32).view(np.complex64).reshape(2, 3),
|
|
]
|
|
NONEMPTY_REAL_DATA = [x for x in REAL_DATA if np.size(x) > 0]
|
|
NONEMPTY_COMPLEX_DATA = [x for x in COMPLEX_DATA if np.size(x) > 0]
|
|
BOOL_DATA = [
|
|
np.array([], dtype=np.bool).reshape(2, 0),
|
|
np.array([], dtype=np.bool).reshape(0, 3),
|
|
np.array([[False, True, False], [True, True, False]]),
|
|
]
|
|
ONES = [np.ones([34000, 2])]
|
|
|
|
def testReduceSumF32(self, index_dtype):
|
|
self._testReduction(math_ops.reduce_sum, np.sum, np.float32, self.REAL_DATA,
|
|
index_dtype)
|
|
|
|
def testReduceSumC64(self, index_dtype):
|
|
self._testReduction(math_ops.reduce_sum, np.sum, np.complex64,
|
|
self.COMPLEX_DATA, index_dtype)
|
|
|
|
def testReduceProdF32(self, index_dtype):
|
|
self._testReduction(math_ops.reduce_prod, np.prod, np.float32,
|
|
self.REAL_DATA, index_dtype)
|
|
|
|
def testReduceProdC64(self, index_dtype):
|
|
self._testReduction(math_ops.reduce_prod, np.prod, np.complex64,
|
|
self.COMPLEX_DATA, index_dtype)
|
|
|
|
def testReduceMin(self, index_dtype):
|
|
|
|
def reference_min(dtype, inp, axis):
|
|
"""Wrapper around np.amin that returns +infinity for an empty input."""
|
|
if inp.shape[axis] == 0:
|
|
if np.issubdtype(dtype, np.floating):
|
|
return np.full(inp.shape[0:axis] + inp.shape[axis + 1:], float('inf'))
|
|
return np.full(inp.shape[0:axis] + inp.shape[axis + 1:],
|
|
np.iinfo(dtype).max)
|
|
return np.amin(inp, axis)
|
|
|
|
for dtype in set(self.all_types).intersection(
|
|
[np.float32, np.int32, np.int64]):
|
|
self._testReduction(math_ops.reduce_min,
|
|
functools.partial(reference_min, dtype), dtype,
|
|
self.REAL_DATA, index_dtype)
|
|
|
|
def testReduceMax(self, index_dtype):
|
|
|
|
def reference_max(dtype, inp, axis):
|
|
"""Wrapper around np.amax that returns -infinity for an empty input."""
|
|
if inp.shape[axis] == 0:
|
|
if np.issubdtype(dtype, np.floating):
|
|
return np.full(inp.shape[0:axis] + inp.shape[axis + 1:],
|
|
float('-inf'))
|
|
return np.full(inp.shape[0:axis] + inp.shape[axis + 1:],
|
|
np.iinfo(dtype).min)
|
|
return np.amax(inp, axis)
|
|
|
|
for dtype in set(self.all_types).intersection(
|
|
[np.float32, np.int32, np.int64]):
|
|
self._testReduction(math_ops.reduce_max,
|
|
functools.partial(reference_max, dtype), dtype,
|
|
self.REAL_DATA, index_dtype)
|
|
|
|
def testReduceMeanF32(self, index_dtype):
|
|
# TODO(phawkins): mean on XLA currently returns 0 instead of NaN when
|
|
# reducing across zero inputs.
|
|
self._testReduction(math_ops.reduce_mean, np.mean, np.float32,
|
|
self.NONEMPTY_REAL_DATA, index_dtype)
|
|
|
|
def testReduceMeanF16(self, index_dtype):
|
|
if np.float16 in self.all_types:
|
|
self._testReduction(math_ops.reduce_mean, np.mean, np.float16, self.ONES,
|
|
index_dtype)
|
|
|
|
def testReduceMeanC64(self, index_dtype):
|
|
self._testReduction(math_ops.reduce_mean, np.mean, np.complex64,
|
|
self.NONEMPTY_COMPLEX_DATA, index_dtype)
|
|
|
|
def testReduceAll(self, index_dtype):
|
|
self._testReduction(math_ops.reduce_all, np.all, np.bool, self.BOOL_DATA,
|
|
index_dtype)
|
|
|
|
def testReduceAny(self, index_dtype):
|
|
self._testReduction(math_ops.reduce_any, np.any, np.bool, self.BOOL_DATA,
|
|
index_dtype)
|
|
|
|
def testReduceSumWithDuplicateAxes(self, index_dtype):
|
|
with self.session() as sess:
|
|
with self.test_scope():
|
|
a = array_ops.placeholder(np.float32)
|
|
index = array_ops.placeholder(np.int32)
|
|
out = math_ops.reduce_sum(a, index)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
'Axes contains duplicate dimension'):
|
|
sess.run(out, {a: [10, 20, 30], index: [0, 0]})
|
|
|
|
|
|
class ReduceOpPrecisionTest(xla_test.XLATestCase):
|
|
|
|
def _testReduceSum(self,
|
|
expected_result,
|
|
dtype,
|
|
test_inputs,
|
|
rtol=1e-3,
|
|
atol=1e-4):
|
|
"""Tests reduce sum on a list of input arrays.
|
|
|
|
For each array in test_inputs, check that performing reduce sum on the array
|
|
produces a value that is close to the expected result.
|
|
|
|
Args:
|
|
expected_result: the expected result.
|
|
dtype: the data type of the reduce sum operation.
|
|
test_inputs: a list of input arrays for the reduce sum operation.
|
|
rtol: the relative error.
|
|
atol: the absolute error.
|
|
"""
|
|
|
|
for test_input in test_inputs:
|
|
with self.session() as sess:
|
|
with self.test_scope():
|
|
a = array_ops.placeholder(dtype)
|
|
index = array_ops.placeholder(dtypes.int32)
|
|
out = math_ops.reduce_sum(a, index)
|
|
result = sess.run(out, {
|
|
a: np.array(test_input, dtype=dtype),
|
|
index: [0]
|
|
})
|
|
# Compare the results using float32 type.
|
|
self.assertAllClose(
|
|
np.float32(result),
|
|
np.float32(expected_result),
|
|
rtol=rtol,
|
|
atol=atol)
|
|
|
|
def testReduceSumF16(self):
|
|
"""Tests the reduce sum of float16 doesn't lose too much precision."""
|
|
|
|
if np.float16 not in self.all_types:
|
|
return
|
|
|
|
f16_max = np.finfo(np.float16).max
|
|
self._testReduceSum(
|
|
f16_max, np.float16,
|
|
itertools.permutations([f16_max, f16_max, f16_max * (-1.0)], 3))
|
|
|
|
def testReduceSumBF16(self):
|
|
"""Tests the reduce sum of bfloat16 doesn't lose too much precision."""
|
|
|
|
if dtypes.bfloat16.as_numpy_dtype not in self.all_types:
|
|
return
|
|
|
|
bf16_max = np.float32(dtypes.bfloat16.max)
|
|
f32_max = dtypes.float32.max
|
|
value = min(bf16_max, f32_max - bf16_max) / 2
|
|
self._testReduceSum(
|
|
dtypes.bfloat16.as_numpy_dtype(value), dtypes.bfloat16.as_numpy_dtype,
|
|
itertools.permutations([bf16_max, value, bf16_max * (-1.0)], 3))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
googletest.main()
|