Also added unit tests and enabled all related functional tests for pooling ops. PiperOrigin-RevId: 321433980 Change-Id: Ia175333d81398deadfcc9e18bb7eeabe8e0c67de
608 lines
20 KiB
Python
608 lines
20 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Functional tests for pooling operations."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gen_nn_ops
|
|
from tensorflow.python.ops import nn_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
def NHWCToNCHW(input_tensor):
|
|
"""Convert the input from NHWC format to NCHW.
|
|
|
|
Args:
|
|
input_tensor: a 4-D tensor, or a 4-element array representing the same.
|
|
|
|
Returns:
|
|
the converted tensor or a shape array
|
|
"""
|
|
if isinstance(input_tensor, ops.Tensor):
|
|
return array_ops.transpose(input_tensor, [0, 3, 1, 2])
|
|
else:
|
|
return [input_tensor[0], input_tensor[3], input_tensor[1], input_tensor[2]]
|
|
|
|
|
|
def NCHWToNHWC(input_tensor):
|
|
"""Convert the input from NCHW format to NHWC.
|
|
|
|
Args:
|
|
input_tensor: a 4-D tensor, or a 4-element array representing the same.
|
|
|
|
Returns:
|
|
the converted tensor or a shape array
|
|
"""
|
|
if isinstance(input_tensor, ops.Tensor):
|
|
return array_ops.transpose(input_tensor, [0, 2, 3, 1])
|
|
else:
|
|
return [input_tensor[0], input_tensor[2], input_tensor[3], input_tensor[1]]
|
|
|
|
|
|
def GetTestConfigs():
|
|
"""Get all the valid tests configs to run.
|
|
|
|
Returns:
|
|
all the valid test configs
|
|
"""
|
|
test_configs = ["NHWC", "NCHW"]
|
|
return test_configs
|
|
|
|
|
|
class PoolingTest(xla_test.XLATestCase):
|
|
|
|
def _VerifyOneTest(self, pool_func, input_sizes, ksize, strides, padding,
|
|
data_format, expected):
|
|
"""Verifies the output values of the pooling function.
|
|
|
|
Args:
|
|
pool_func: Function to be called, currently only co.MaxPool.
|
|
input_sizes: Input tensor dimensions.
|
|
ksize: The kernel size dimensions
|
|
strides: The stride dimensions
|
|
padding: Padding type.
|
|
data_format: The data format we use to run the pooling operation.
|
|
expected: An array containing the expected operation outputs.
|
|
"""
|
|
total_size = np.prod(input_sizes)
|
|
# Initializes the input tensor with array containing incrementing
|
|
# numbers from 1.
|
|
x = np.array([f * 1.0 for f in range(1, total_size + 1)], dtype=np.float32)
|
|
x = x.reshape(input_sizes)
|
|
with self.session() as sess:
|
|
with self.test_scope():
|
|
inputs = array_ops.placeholder(dtypes.float32)
|
|
t = inputs
|
|
if data_format == "NCHW":
|
|
t = NHWCToNCHW(t)
|
|
ksize = NHWCToNCHW(ksize)
|
|
strides = NHWCToNCHW(strides)
|
|
t = pool_func(t,
|
|
ksize=ksize,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
if data_format == "NCHW":
|
|
t = NCHWToNHWC(t)
|
|
actual = sess.run(t, {inputs: x})
|
|
self.assertAllClose(expected, actual.flatten(), rtol=1e-5, atol=1e-6)
|
|
|
|
def _VerifyValues(self, pool_func, input_sizes, ksize, strides, padding,
|
|
expected):
|
|
"""Verifies the output values of the pooling function.
|
|
|
|
Args:
|
|
pool_func: Function to be called, co.MaxPool, co.AvgPool,
|
|
or the Lua version.
|
|
input_sizes: Input tensor dimensions.
|
|
ksize: The kernel size dimensions
|
|
strides: The stride dimensions
|
|
padding: Padding type.
|
|
expected: An array containing the expected operation outputs.
|
|
"""
|
|
for data_format in GetTestConfigs():
|
|
self._VerifyOneTest(pool_func, input_sizes, ksize, strides, padding,
|
|
data_format, expected)
|
|
|
|
def testMaxPoolValidPadding(self):
|
|
expected_output = [13.0, 14.0, 15.0]
|
|
self._VerifyValues(nn_ops.max_pool,
|
|
input_sizes=[1, 3, 3, 3],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
def testMaxPoolSamePadding(self):
|
|
expected_output = [13.0, 14.0, 15.0, 16.0, 17.0, 18.0]
|
|
self._VerifyValues(nn_ops.max_pool,
|
|
input_sizes=[1, 2, 3, 3],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME",
|
|
expected=expected_output)
|
|
|
|
def testMaxPoolSamePaddingNonSquareWindow(self):
|
|
# input is:
|
|
# [1.0, 2.0
|
|
# 3.0 4.0]
|
|
#
|
|
# Window of [x, x] should do:
|
|
#
|
|
# [max(1.0, 2.0), max(2.0, padded0),
|
|
# max(3.0, 4.0), max(4.0, padded0)]
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 2, 2, 1],
|
|
ksize=[1, 1, 2, 1],
|
|
strides=[1, 1, 1, 1],
|
|
padding="SAME",
|
|
expected=[2.0, 2.0, 4.0, 4.0])
|
|
|
|
def testMaxPoolValidPaddingUnevenStride(self):
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 4, 4, 1],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 1, 2, 1],
|
|
padding="VALID",
|
|
expected=[6.0, 8.0, 10.0, 12.0, 14.0, 16.0])
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 4, 4, 1],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 1, 1],
|
|
padding="VALID",
|
|
expected=[6.0, 7.0, 8.0, 14.0, 15.0, 16.0])
|
|
|
|
def testMaxPoolSamePaddingFilter4(self):
|
|
expected_output = [
|
|
21.0, 22.0, 23.0, 24.0, 29.0, 30.0, 31.0, 32.0, 53.0, 54.0, 55.0, 56.0,
|
|
61.0, 62.0, 63.0, 64.0
|
|
]
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 4, 4, 4],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME",
|
|
expected=expected_output)
|
|
|
|
def testMaxPoolSamePaddingFilter8(self):
|
|
expected_output = [
|
|
145.0, 146.0, 147.0, 148.0, 149.0, 150.0, 151.0, 152.0, 161.0, 162.0,
|
|
163.0, 164.0, 165.0, 166.0, 167.0, 168.0, 177.0, 178.0, 179.0, 180.0,
|
|
181.0, 182.0, 183.0, 184.0, 185.0, 186.0, 187.0, 188.0, 189.0, 190.0,
|
|
191.0, 192.0, 273.0, 274.0, 275.0, 276.0, 277.0, 278.0, 279.0, 280.0,
|
|
289.0, 290.0, 291.0, 292.0, 293.0, 294.0, 295.0, 296.0, 305.0, 306.0,
|
|
307.0, 308.0, 309.0, 310.0, 311.0, 312.0, 313.0, 314.0, 315.0, 316.0,
|
|
317.0, 318.0, 319.0, 320.0, 401.0, 402.0, 403.0, 404.0, 405.0, 406.0,
|
|
407.0, 408.0, 417.0, 418.0, 419.0, 420.0, 421.0, 422.0, 423.0, 424.0,
|
|
433.0, 434.0, 435.0, 436.0, 437.0, 438.0, 439.0, 440.0, 441.0, 442.0,
|
|
443.0, 444.0, 445.0, 446.0, 447.0, 448.0, 465.0, 466.0, 467.0, 468.0,
|
|
469.0, 470.0, 471.0, 472.0, 481.0, 482.0, 483.0, 484.0, 485.0, 486.0,
|
|
487.0, 488.0, 497.0, 498.0, 499.0, 500.0, 501.0, 502.0, 503.0, 504.0,
|
|
505.0, 506.0, 507.0, 508.0, 509.0, 510.0, 511.0, 512.0
|
|
]
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 8, 8, 8],
|
|
ksize=[1, 3, 3, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME",
|
|
expected=expected_output)
|
|
|
|
# Tests for DepthwiseMaxPooling on CPU only.
|
|
def testDepthwiseMaxPool1x1DepthWindow1(self):
|
|
# input is:
|
|
# [1.0, ..., 10.0] along depth,
|
|
#
|
|
# We maxpool by depth in patches of 2.
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 1, 1, 10],
|
|
ksize=[1, 1, 1, 2],
|
|
strides=[1, 1, 1, 2],
|
|
padding="SAME",
|
|
expected=[2.0, 4.0, 6.0, 8.0, 10.0])
|
|
|
|
def testDepthwiseMaxPool2x2DepthWindow3(self):
|
|
# input is:
|
|
#
|
|
# a 2x2x6 cube, and we depthwise max across 3 to produce a 2x2x2
|
|
# output. Each node has contiguous values, so the depthwise max
|
|
# should be multiples of 3.0.
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 2, 2, 6],
|
|
ksize=[1, 1, 1, 3],
|
|
strides=[1, 1, 1, 3],
|
|
padding="SAME",
|
|
expected=[3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0])
|
|
|
|
def testKernelSmallerThanStrideValid(self):
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 7, 7, 1],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 3, 3, 1],
|
|
padding="VALID",
|
|
expected=[9, 12, 30, 33])
|
|
|
|
def testKernelSmallerThanStrideSame(self):
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 3, 3, 1],
|
|
ksize=[1, 1, 1, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME",
|
|
expected=[1, 3, 7, 9])
|
|
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
input_sizes=[1, 4, 4, 1],
|
|
ksize=[1, 1, 1, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME",
|
|
expected=[1, 3, 9, 11])
|
|
|
|
# Average pooling
|
|
def testAvgPoolValidPadding(self):
|
|
expected_output = [7, 8, 9]
|
|
self._VerifyValues(
|
|
nn_ops.avg_pool,
|
|
input_sizes=[1, 3, 3, 3],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
def testAvgPoolSamePadding(self):
|
|
expected_output = [7., 8., 9., 11.5, 12.5, 13.5]
|
|
self._VerifyValues(
|
|
nn_ops.avg_pool,
|
|
input_sizes=[1, 2, 3, 3],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME",
|
|
expected=expected_output)
|
|
|
|
|
|
class PoolGradTest(xla_test.XLATestCase):
|
|
|
|
CPU_DEVICE = "/job:localhost/replica:0/task:0/cpu:0"
|
|
|
|
def _VerifyOneTest(self,
|
|
pool_func,
|
|
pool_grad_func,
|
|
input_sizes,
|
|
ksize,
|
|
strides,
|
|
padding,
|
|
data_format,
|
|
pool_grad_grad_func=None):
|
|
"""Verifies the output values of the pooling gradient function.
|
|
|
|
Args:
|
|
pool_func: Forward pooling function
|
|
pool_grad_func: Pooling gradient function for pool_grad_func
|
|
input_sizes: Input tensor dimensions.
|
|
ksize: The kernel size dimensions
|
|
strides: The stride dimensions
|
|
padding: Padding type.
|
|
data_format: The data format we use to run the pooling operation.
|
|
pool_grad_grad_func: Second-order gradient function, if available.
|
|
"""
|
|
total_size = np.prod(input_sizes)
|
|
# TODO(b/73062247): MaxPoolGradGrad can confuse gradients when x is equally
|
|
# maximal at 16 bits. Switch to np.random.randn when resolved.
|
|
x = np.arange(1, total_size + 1, dtype=np.float32)
|
|
x *= (np.random.randint(2, size=total_size) * 2 - 1) # Flip signs randomly
|
|
# Verify some specifically interesting values...
|
|
x[np.random.choice(total_size)] = np.inf
|
|
x[np.random.choice(total_size)] = -np.inf
|
|
# TODO(b/74222344): Fix nan handling for max pool grad.
|
|
# x[np.random.choice(total_size)] = np.nan
|
|
x = x.reshape(input_sizes)
|
|
with self.session() as sess:
|
|
# Use the forward pool function to compute some corresponding outputs
|
|
# (needed for the CPU device, and we need the shape in both cases).
|
|
with ops.device(self.CPU_DEVICE):
|
|
inputs = array_ops.placeholder(dtypes.float32, shape=input_sizes)
|
|
outputs = pool_func(
|
|
inputs,
|
|
ksize=ksize,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format="NHWC")
|
|
|
|
output_vals = np.array(sess.run(outputs, {inputs: x}))
|
|
output_gradient_vals = np.arange(
|
|
1, output_vals.size + 1, dtype=np.float32)
|
|
output_gradient_vals = output_gradient_vals.reshape(output_vals.shape)
|
|
output_grad_grad_vals = np.arange(1, x.size + 1, dtype=np.float32)
|
|
output_grad_grad_vals = output_grad_grad_vals.reshape(x.shape)
|
|
|
|
# Use the Tensorflow CPU pooling gradient to compute the expected input
|
|
# gradients.
|
|
with ops.device(self.CPU_DEVICE):
|
|
output_gradients = array_ops.placeholder(
|
|
dtypes.float32, shape=output_vals.shape)
|
|
expected_input_gradients = pool_grad_func(
|
|
inputs,
|
|
outputs,
|
|
output_gradients,
|
|
ksize=ksize,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format="NHWC")
|
|
expected_input_gradient_vals = sess.run(
|
|
expected_input_gradients,
|
|
{inputs: x,
|
|
output_gradients: output_gradient_vals})
|
|
|
|
output_grad_gradients = array_ops.placeholder(
|
|
dtypes.float32, shape=expected_input_gradient_vals.shape)
|
|
if pool_grad_grad_func is not None:
|
|
expected_grad_gradients = pool_grad_grad_func(
|
|
inputs,
|
|
outputs,
|
|
output_grad_gradients,
|
|
ksize=ksize,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format="NHWC")
|
|
expected_grad_gradients_vals = sess.run(expected_grad_gradients, {
|
|
inputs: x,
|
|
output_grad_gradients: output_grad_grad_vals
|
|
})
|
|
|
|
# Run the gradient op on the XLA device
|
|
with self.test_scope():
|
|
outputs = array_ops.placeholder(dtypes.float32, shape=output_vals.shape)
|
|
xla_inputs = inputs
|
|
xla_outputs = outputs
|
|
xla_output_gradients = output_gradients
|
|
xla_output_grad_gradients = output_grad_gradients
|
|
xla_ksize = ksize
|
|
xla_strides = strides
|
|
if data_format == "NCHW":
|
|
xla_inputs = NHWCToNCHW(inputs)
|
|
xla_outputs = NHWCToNCHW(outputs)
|
|
xla_output_gradients = NHWCToNCHW(output_gradients)
|
|
xla_output_grad_gradients = NHWCToNCHW(output_grad_gradients)
|
|
xla_ksize = NHWCToNCHW(ksize)
|
|
xla_strides = NHWCToNCHW(strides)
|
|
actual_input_gradients = pool_grad_func(
|
|
xla_inputs,
|
|
xla_outputs,
|
|
xla_output_gradients,
|
|
ksize=xla_ksize,
|
|
strides=xla_strides,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
if data_format == "NCHW":
|
|
actual_input_gradients = NCHWToNHWC(actual_input_gradients)
|
|
if pool_grad_grad_func is not None:
|
|
actual_grad_gradients = pool_grad_grad_func(
|
|
xla_inputs,
|
|
xla_outputs,
|
|
xla_output_grad_gradients,
|
|
ksize=xla_ksize,
|
|
strides=xla_strides,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
if data_format == "NCHW":
|
|
actual_grad_gradients = NCHWToNHWC(actual_grad_gradients)
|
|
actual_input_gradients_vals = sess.run(actual_input_gradients, {
|
|
inputs: x,
|
|
outputs: output_vals,
|
|
output_gradients: output_gradient_vals
|
|
})
|
|
# Compare the Tensorflow and XLA results.
|
|
self.assertAllClose(
|
|
expected_input_gradient_vals,
|
|
actual_input_gradients_vals,
|
|
rtol=1e-4,
|
|
atol=1e-6)
|
|
self.assertShapeEqual(actual_input_gradients_vals, inputs)
|
|
|
|
if pool_grad_grad_func is not None:
|
|
actual_grad_gradients_vals = sess.run(
|
|
actual_grad_gradients, {
|
|
inputs: x,
|
|
outputs: output_vals,
|
|
output_grad_gradients: output_grad_grad_vals
|
|
})
|
|
|
|
# Compare the Tensorflow and XLA results.
|
|
self.assertAllClose(
|
|
expected_grad_gradients_vals,
|
|
actual_grad_gradients_vals,
|
|
rtol=1e-4,
|
|
atol=1e-6)
|
|
self.assertShapeEqual(actual_grad_gradients_vals, outputs)
|
|
|
|
def _VerifyValues(self,
|
|
pool_func,
|
|
pool_grad_func,
|
|
input_sizes,
|
|
ksize,
|
|
strides,
|
|
padding,
|
|
pool_grad_grad_func=None):
|
|
"""Verifies the output values of the pooling function.
|
|
|
|
Args:
|
|
pool_func: Pooling function to be called, e.g., tf.nn.max_pool2d
|
|
pool_grad_func: Corresponding pooling gradient function.
|
|
input_sizes: Input tensor dimensions.
|
|
ksize: The kernel size dimensions
|
|
strides: The stride dimensions
|
|
padding: Padding type.
|
|
pool_grad_grad_func: Second-order gradient function, if available.
|
|
"""
|
|
for data_format in GetTestConfigs():
|
|
self._VerifyOneTest(
|
|
pool_func,
|
|
pool_grad_func,
|
|
input_sizes,
|
|
ksize,
|
|
strides,
|
|
padding,
|
|
data_format,
|
|
pool_grad_grad_func=pool_grad_grad_func)
|
|
|
|
def _TestPooling(self, forward_op, backward_op, pool_grad_grad_func=None):
|
|
# VALID padding
|
|
self._VerifyValues(
|
|
forward_op,
|
|
backward_op,
|
|
input_sizes=[1, 3, 3, 3],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="VALID",
|
|
pool_grad_grad_func=pool_grad_grad_func)
|
|
|
|
# SAME padding
|
|
self._VerifyValues(
|
|
forward_op,
|
|
backward_op,
|
|
input_sizes=[1, 2, 3, 3],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME",
|
|
pool_grad_grad_func=pool_grad_grad_func)
|
|
|
|
# SAME padding, non square window
|
|
self._VerifyValues(
|
|
forward_op,
|
|
backward_op,
|
|
input_sizes=[1, 2, 2, 1],
|
|
ksize=[1, 1, 2, 1],
|
|
strides=[1, 1, 1, 1],
|
|
padding="SAME",
|
|
pool_grad_grad_func=pool_grad_grad_func)
|
|
|
|
# VALID padding, uneven stride
|
|
self._VerifyValues(
|
|
forward_op,
|
|
backward_op,
|
|
input_sizes=[1, 4, 4, 1],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 1, 2, 1],
|
|
padding="VALID",
|
|
pool_grad_grad_func=pool_grad_grad_func)
|
|
self._VerifyValues(
|
|
forward_op,
|
|
backward_op,
|
|
input_sizes=[1, 4, 4, 1],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 1, 1],
|
|
padding="VALID",
|
|
pool_grad_grad_func=pool_grad_grad_func)
|
|
|
|
# SAME padding, size 4 input
|
|
self._VerifyValues(
|
|
forward_op,
|
|
backward_op,
|
|
input_sizes=[1, 4, 4, 4],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME",
|
|
pool_grad_grad_func=pool_grad_grad_func)
|
|
|
|
# SAME padding, size 8 input
|
|
self._VerifyValues(
|
|
forward_op,
|
|
backward_op,
|
|
input_sizes=[1, 8, 8, 8],
|
|
ksize=[1, 3, 3, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME",
|
|
pool_grad_grad_func=pool_grad_grad_func)
|
|
|
|
@test_util.disable_mlir_bridge("TODO(b/159845178): Implement support for "
|
|
"MaxPoolGradGrad op in MLIR-based bridge")
|
|
def testMaxPool(self):
|
|
self._TestPooling(
|
|
nn_ops.max_pool,
|
|
gen_nn_ops.max_pool_grad,
|
|
pool_grad_grad_func=gen_nn_ops.max_pool_grad_grad)
|
|
|
|
# TODO(b/159845178): Remove this once MLIR bridge supports MaxPoolGradGrad
|
|
# (then `testMaxPool` test will be sufficient)
|
|
def testMaxPoolNoGradGrad(self):
|
|
self._TestPooling(
|
|
nn_ops.max_pool, gen_nn_ops.max_pool_grad, pool_grad_grad_func=None)
|
|
|
|
def testAvgPool(self):
|
|
# Wrapper around AvgPoolGrad that ignores extra arguments needed by
|
|
# MaxPoolGrad.
|
|
def AvgPoolGrad(inputs, outputs, output_gradients, ksize, strides, padding,
|
|
data_format):
|
|
del outputs # Unused by average-pooling gradients.
|
|
return gen_nn_ops.avg_pool_grad(
|
|
inputs.get_shape().as_list(),
|
|
output_gradients,
|
|
ksize=ksize,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
|
|
self._TestPooling(nn_ops.avg_pool, AvgPoolGrad)
|
|
|
|
# The CPU implementation of AvgPoolGrad doesn't accept kernels smaller than
|
|
# the stride size, so we only run the following tests on MaxPoolGrad.
|
|
|
|
def testMaxPoolKernelSmallerThanStrideValid(self):
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
gen_nn_ops.max_pool_grad,
|
|
input_sizes=[1, 7, 7, 1],
|
|
ksize=[1, 2, 2, 1],
|
|
strides=[1, 3, 3, 1],
|
|
padding="VALID")
|
|
|
|
def testMaxPoolKernelSmallerThanStrideSame(self):
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
gen_nn_ops.max_pool_grad,
|
|
input_sizes=[1, 3, 3, 1],
|
|
ksize=[1, 1, 1, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME")
|
|
|
|
self._VerifyValues(
|
|
nn_ops.max_pool,
|
|
gen_nn_ops.max_pool_grad,
|
|
input_sizes=[1, 4, 4, 1],
|
|
ksize=[1, 1, 1, 1],
|
|
strides=[1, 2, 2, 1],
|
|
padding="SAME")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|