The session returned by cached_session uses soft placement, something we don't want for XLA_* devices. With soft placement ops lacking XLA kernels silently fall back and run on the CPU, misleading us into thinking we have more test coverage than we actually do. With this test some tests (rightly) start failing because they were testing ops with dtypes the XLA kernels do not support. I've removed these dtypes from the tests. This CL partially addresses b/132430685. It stubs out "cached_session" and "test_session" to raise errors, so we have more confidence that the compiler is being exercised. However, we still use XLA_* devices to exercise XLA, which has a different code path than xla.compile and tpu.rewrite. This needs to be incrementally fixed. PiperOrigin-RevId: 248437673
284 lines
12 KiB
Python
284 lines
12 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Test cases for operators with > 3 or arbitrary numbers of arguments."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
class NAryOpsTest(xla_test.XLATestCase):
|
|
|
|
def _testNAry(self, op, args, expected, equality_fn=None):
|
|
with self.session() as session:
|
|
with self.test_scope():
|
|
placeholders = [
|
|
array_ops.placeholder(dtypes.as_dtype(arg.dtype), arg.shape)
|
|
for arg in args
|
|
]
|
|
feeds = {placeholders[i]: args[i] for i in range(0, len(args))}
|
|
output = op(placeholders)
|
|
result = session.run(output, feeds)
|
|
if not equality_fn:
|
|
equality_fn = self.assertAllClose
|
|
equality_fn(result, expected, rtol=1e-3)
|
|
|
|
def _nAryListCheck(self, results, expected, **kwargs):
|
|
self.assertEqual(len(results), len(expected))
|
|
for (r, e) in zip(results, expected):
|
|
self.assertAllClose(r, e, **kwargs)
|
|
|
|
def _testNAryLists(self, op, args, expected):
|
|
self._testNAry(op, args, expected, equality_fn=self._nAryListCheck)
|
|
|
|
def testFloat(self):
|
|
self._testNAry(math_ops.add_n,
|
|
[np.array([[1, 2, 3]], dtype=np.float32)],
|
|
expected=np.array([[1, 2, 3]], dtype=np.float32))
|
|
|
|
self._testNAry(math_ops.add_n,
|
|
[np.array([1, 2], dtype=np.float32),
|
|
np.array([10, 20], dtype=np.float32)],
|
|
expected=np.array([11, 22], dtype=np.float32))
|
|
self._testNAry(math_ops.add_n,
|
|
[np.array([-4], dtype=np.float32),
|
|
np.array([10], dtype=np.float32),
|
|
np.array([42], dtype=np.float32)],
|
|
expected=np.array([48], dtype=np.float32))
|
|
|
|
def testComplex(self):
|
|
for dtype in self.complex_types:
|
|
self._testNAry(
|
|
math_ops.add_n, [np.array([[1 + 2j, 2 - 3j, 3 + 4j]], dtype=dtype)],
|
|
expected=np.array([[1 + 2j, 2 - 3j, 3 + 4j]], dtype=dtype))
|
|
|
|
self._testNAry(
|
|
math_ops.add_n, [
|
|
np.array([1 + 2j, 2 - 3j], dtype=dtype),
|
|
np.array([10j, 20], dtype=dtype)
|
|
],
|
|
expected=np.array([1 + 12j, 22 - 3j], dtype=dtype))
|
|
self._testNAry(
|
|
math_ops.add_n, [
|
|
np.array([-4, 5j], dtype=dtype),
|
|
np.array([2 + 10j, -2], dtype=dtype),
|
|
np.array([42j, 3 + 3j], dtype=dtype)
|
|
],
|
|
expected=np.array([-2 + 52j, 1 + 8j], dtype=dtype))
|
|
|
|
@unittest.skip("IdentityN is temporarily CompilationOnly as workaround")
|
|
def testIdentityN(self):
|
|
self._testNAryLists(array_ops.identity_n,
|
|
[np.array([[1, 2, 3]], dtype=np.float32)],
|
|
expected=[np.array([[1, 2, 3]], dtype=np.float32)])
|
|
self._testNAryLists(array_ops.identity_n,
|
|
[np.array([[1, 2], [3, 4]], dtype=np.float32),
|
|
np.array([[3, 2, 1], [6, 5, 1]], dtype=np.float32)],
|
|
expected=[
|
|
np.array([[1, 2], [3, 4]], dtype=np.float32),
|
|
np.array([[3, 2, 1], [6, 5, 1]], dtype=np.float32)])
|
|
self._testNAryLists(array_ops.identity_n,
|
|
[np.array([[1], [2], [3], [4]], dtype=np.int32),
|
|
np.array([[3, 2, 1], [6, 5, 1]], dtype=np.float32)],
|
|
expected=[
|
|
np.array([[1], [2], [3], [4]], dtype=np.int32),
|
|
np.array([[3, 2, 1], [6, 5, 1]], dtype=np.float32)])
|
|
|
|
def testConcat(self):
|
|
self._testNAry(
|
|
lambda x: array_ops.concat(x, 0), [
|
|
np.array(
|
|
[[1, 2, 3], [4, 5, 6]], dtype=np.float32), np.array(
|
|
[[7, 8, 9], [10, 11, 12]], dtype=np.float32)
|
|
],
|
|
expected=np.array(
|
|
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=np.float32))
|
|
|
|
self._testNAry(
|
|
lambda x: array_ops.concat(x, 1), [
|
|
np.array(
|
|
[[1, 2, 3], [4, 5, 6]], dtype=np.float32), np.array(
|
|
[[7, 8, 9], [10, 11, 12]], dtype=np.float32)
|
|
],
|
|
expected=np.array(
|
|
[[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]], dtype=np.float32))
|
|
|
|
def testOneHot(self):
|
|
with self.session() as session, self.test_scope():
|
|
indices = array_ops.constant(np.array([[2, 3], [0, 1]], dtype=np.int32))
|
|
op = array_ops.one_hot(indices,
|
|
np.int32(4),
|
|
on_value=np.float32(7), off_value=np.float32(3))
|
|
output = session.run(op)
|
|
expected = np.array([[[3, 3, 7, 3], [3, 3, 3, 7]],
|
|
[[7, 3, 3, 3], [3, 7, 3, 3]]],
|
|
dtype=np.float32)
|
|
self.assertAllEqual(output, expected)
|
|
|
|
op = array_ops.one_hot(indices,
|
|
np.int32(4),
|
|
on_value=np.int32(2), off_value=np.int32(1),
|
|
axis=1)
|
|
output = session.run(op)
|
|
expected = np.array([[[1, 1], [1, 1], [2, 1], [1, 2]],
|
|
[[2, 1], [1, 2], [1, 1], [1, 1]]],
|
|
dtype=np.int32)
|
|
self.assertAllEqual(output, expected)
|
|
|
|
def testSplitV(self):
|
|
with self.session() as session:
|
|
with self.test_scope():
|
|
output = session.run(
|
|
array_ops.split(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2]],
|
|
dtype=np.float32),
|
|
[2, 2], 1))
|
|
expected = [np.array([[1, 2], [5, 6], [9, 0]], dtype=np.float32),
|
|
np.array([[3, 4], [7, 8], [1, 2]], dtype=np.float32)]
|
|
self.assertAllEqual(output, expected)
|
|
|
|
def testStridedSlice(self):
|
|
self._testNAry(lambda x: array_ops.strided_slice(*x),
|
|
[np.array([[], [], []], dtype=np.float32),
|
|
np.array([1, 0], dtype=np.int32),
|
|
np.array([3, 0], dtype=np.int32),
|
|
np.array([1, 1], dtype=np.int32)],
|
|
expected=np.array([[], []], dtype=np.float32))
|
|
|
|
if np.int64 in self.int_types:
|
|
self._testNAry(
|
|
lambda x: array_ops.strided_slice(*x), [
|
|
np.array([[], [], []], dtype=np.float32), np.array(
|
|
[1, 0], dtype=np.int64), np.array([3, 0], dtype=np.int64),
|
|
np.array([1, 1], dtype=np.int64)
|
|
],
|
|
expected=np.array([[], []], dtype=np.float32))
|
|
|
|
self._testNAry(lambda x: array_ops.strided_slice(*x),
|
|
[np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
|
dtype=np.float32),
|
|
np.array([1, 1], dtype=np.int32),
|
|
np.array([3, 3], dtype=np.int32),
|
|
np.array([1, 1], dtype=np.int32)],
|
|
expected=np.array([[5, 6], [8, 9]], dtype=np.float32))
|
|
|
|
self._testNAry(lambda x: array_ops.strided_slice(*x),
|
|
[np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
|
dtype=np.float32),
|
|
np.array([0, 2], dtype=np.int32),
|
|
np.array([2, 0], dtype=np.int32),
|
|
np.array([1, -1], dtype=np.int32)],
|
|
expected=np.array([[3, 2], [6, 5]], dtype=np.float32))
|
|
|
|
self._testNAry(lambda x: x[0][0:2, array_ops.newaxis, ::-1],
|
|
[np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
|
dtype=np.float32)],
|
|
expected=np.array([[[3, 2, 1]], [[6, 5, 4]]],
|
|
dtype=np.float32))
|
|
|
|
self._testNAry(lambda x: x[0][1, :, array_ops.newaxis],
|
|
[np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
|
dtype=np.float32)],
|
|
expected=np.array([[4], [5], [6]], dtype=np.float32))
|
|
|
|
def testStridedSliceGrad(self):
|
|
# Tests cases where input shape is empty.
|
|
self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
|
|
[np.array([], dtype=np.int32),
|
|
np.array([], dtype=np.int32),
|
|
np.array([], dtype=np.int32),
|
|
np.array([], dtype=np.int32),
|
|
np.float32(0.5)],
|
|
expected=np.array(np.float32(0.5), dtype=np.float32))
|
|
|
|
# Tests case where input shape is non-empty, but gradients are empty.
|
|
self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
|
|
[np.array([3], dtype=np.int32),
|
|
np.array([0], dtype=np.int32),
|
|
np.array([0], dtype=np.int32),
|
|
np.array([1], dtype=np.int32),
|
|
np.array([], dtype=np.float32)],
|
|
expected=np.array([0, 0, 0], dtype=np.float32))
|
|
|
|
self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
|
|
[np.array([3, 0], dtype=np.int32),
|
|
np.array([1, 0], dtype=np.int32),
|
|
np.array([3, 0], dtype=np.int32),
|
|
np.array([1, 1], dtype=np.int32),
|
|
np.array([[], []], dtype=np.float32)],
|
|
expected=np.array([[], [], []], dtype=np.float32))
|
|
|
|
self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
|
|
[np.array([3, 3], dtype=np.int32),
|
|
np.array([1, 1], dtype=np.int32),
|
|
np.array([3, 3], dtype=np.int32),
|
|
np.array([1, 1], dtype=np.int32),
|
|
np.array([[5, 6], [8, 9]], dtype=np.float32)],
|
|
expected=np.array([[0, 0, 0], [0, 5, 6], [0, 8, 9]],
|
|
dtype=np.float32))
|
|
|
|
def ssg_test(x):
|
|
return array_ops.strided_slice_grad(*x, shrink_axis_mask=0x4,
|
|
new_axis_mask=0x1)
|
|
|
|
self._testNAry(ssg_test,
|
|
[np.array([3, 1, 3], dtype=np.int32),
|
|
np.array([0, 0, 0, 2], dtype=np.int32),
|
|
np.array([0, 3, 1, -4], dtype=np.int32),
|
|
np.array([1, 2, 1, -3], dtype=np.int32),
|
|
np.array([[[1], [2]]], dtype=np.float32)],
|
|
expected=np.array([[[0, 0, 1]], [[0, 0, 0]], [[0, 0, 2]]],
|
|
dtype=np.float32))
|
|
|
|
ssg_test2 = lambda x: array_ops.strided_slice_grad(*x, new_axis_mask=0x15)
|
|
self._testNAry(ssg_test2,
|
|
[np.array([4, 4], dtype=np.int32),
|
|
np.array([0, 0, 0, 1, 0], dtype=np.int32),
|
|
np.array([0, 3, 0, 4, 0], dtype=np.int32),
|
|
np.array([1, 2, 1, 2, 1], dtype=np.int32),
|
|
np.array([[[[[1], [2]]], [[[3], [4]]]]], dtype=np.float32)],
|
|
expected=np.array([[0, 1, 0, 2], [0, 0, 0, 0], [0, 3, 0, 4],
|
|
[0, 0, 0, 0]], dtype=np.float32))
|
|
|
|
self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
|
|
[np.array([3, 3], dtype=np.int32),
|
|
np.array([0, 2], dtype=np.int32),
|
|
np.array([2, 0], dtype=np.int32),
|
|
np.array([1, -1], dtype=np.int32),
|
|
np.array([[1, 2], [3, 4]], dtype=np.float32)],
|
|
expected=np.array([[0, 2, 1], [0, 4, 3], [0, 0, 0]],
|
|
dtype=np.float32))
|
|
|
|
self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
|
|
[np.array([3, 3], dtype=np.int32),
|
|
np.array([2, 2], dtype=np.int32),
|
|
np.array([0, 1], dtype=np.int32),
|
|
np.array([-1, -2], dtype=np.int32),
|
|
np.array([[1], [2]], dtype=np.float32)],
|
|
expected=np.array([[0, 0, 0], [0, 0, 2], [0, 0, 1]],
|
|
dtype=np.float32))
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|