Added support for HLO ops bitcast-convert, sort and while in MlirHloBuilder and enabled tests for NonMaxSuppressionV4 and SelfAdjointEigV2Op using these ops. PiperOrigin-RevId: 324360651 Change-Id: I300b67cfea37a1a4362cd543e8ba7c82b00273a7
1324 lines
53 KiB
Python
1324 lines
53 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for image ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import colorsys
|
|
import math
|
|
import os
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gen_image_ops
|
|
from tensorflow.python.ops import image_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
def _generate_numpy_random_rgb(shape):
|
|
# Only generate floating points that are fractions like n / 256, since they
|
|
# are RGB pixels. Some low-precision floating point types in this test can't
|
|
# handle arbitrary precision floating points well.
|
|
return np.random.randint(0, 256, shape) / 256.
|
|
|
|
|
|
class RGBToHSVTest(xla_test.XLATestCase):
|
|
|
|
def testBatch(self):
|
|
# Build an arbitrary RGB image
|
|
np.random.seed(7)
|
|
batch_size = 5
|
|
shape = (batch_size, 2, 7, 3)
|
|
|
|
for nptype in self.float_types:
|
|
inp = _generate_numpy_random_rgb(shape).astype(nptype)
|
|
|
|
# Convert to HSV and back, as a batch and individually
|
|
with self.session() as sess:
|
|
batch0 = array_ops.placeholder(nptype, shape=shape)
|
|
with self.test_scope():
|
|
batch1 = image_ops.rgb_to_hsv(batch0)
|
|
batch2 = image_ops.hsv_to_rgb(batch1)
|
|
split0 = array_ops.unstack(batch0)
|
|
with self.test_scope():
|
|
split1 = list(map(image_ops.rgb_to_hsv, split0))
|
|
split2 = list(map(image_ops.hsv_to_rgb, split1))
|
|
join1 = array_ops.stack(split1)
|
|
join2 = array_ops.stack(split2)
|
|
batch1, batch2, join1, join2 = sess.run([batch1, batch2, join1, join2],
|
|
{batch0: inp})
|
|
|
|
# Verify that processing batch elements together is the same as separate
|
|
self.assertAllCloseAccordingToType(batch1, join1, half_rtol=0.000002)
|
|
self.assertAllCloseAccordingToType(batch2, join2, half_rtol=0.000002)
|
|
self.assertAllCloseAccordingToType(
|
|
batch2, inp, bfloat16_atol=0.03, half_rtol=0.02)
|
|
|
|
def testRGBToHSVRoundTrip(self):
|
|
data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
|
|
for nptype in self.float_types:
|
|
rgb_np = np.array(data, dtype=nptype).reshape([2, 2, 3]) / 255.
|
|
with self.session():
|
|
placeholder = array_ops.placeholder(nptype)
|
|
with self.test_scope():
|
|
hsv = image_ops.rgb_to_hsv(placeholder)
|
|
rgb = image_ops.hsv_to_rgb(hsv)
|
|
rgb_tf = rgb.eval(feed_dict={placeholder: rgb_np})
|
|
self.assertAllCloseAccordingToType(rgb_tf, rgb_np, bfloat16_atol=0.03)
|
|
|
|
def testRGBToHSVNumpy(self):
|
|
"""Tests the RGB to HSV conversion matches a reference implementation."""
|
|
for nptype in self.float_types:
|
|
rgb_flat = _generate_numpy_random_rgb((64, 3)).astype(nptype)
|
|
rgb_np = rgb_flat.reshape(4, 4, 4, 3)
|
|
hsv_np = np.array([
|
|
colorsys.rgb_to_hsv(
|
|
r.astype(np.float64), g.astype(np.float64), b.astype(np.float64))
|
|
for r, g, b in rgb_flat
|
|
])
|
|
hsv_np = hsv_np.reshape(4, 4, 4, 3)
|
|
with self.session():
|
|
placeholder = array_ops.placeholder(nptype)
|
|
with self.test_scope():
|
|
hsv_op = image_ops.rgb_to_hsv(placeholder)
|
|
hsv_tf = hsv_op.eval(feed_dict={placeholder: rgb_np})
|
|
self.assertAllCloseAccordingToType(hsv_tf, hsv_np)
|
|
|
|
|
|
class AdjustContrastTest(xla_test.XLATestCase):
|
|
|
|
def _testContrast(self, x_np, y_np, contrast_factor):
|
|
with self.session():
|
|
x = array_ops.placeholder(x_np.dtype, shape=x_np.shape)
|
|
flt_x = image_ops.convert_image_dtype(x, dtypes.float32)
|
|
with self.test_scope():
|
|
y = image_ops.adjust_contrast(flt_x, contrast_factor)
|
|
y = image_ops.convert_image_dtype(y, x.dtype, saturate=True)
|
|
y_tf = y.eval({x: x_np})
|
|
self.assertAllClose(y_tf, y_np, 1e-6)
|
|
|
|
def testFloatContrast(self):
|
|
x_shape = [1, 2, 2, 3]
|
|
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
|
|
x_np = np.array(x_data, dtype=np.float32).reshape(x_shape) / 255.
|
|
|
|
y_data = [
|
|
-45.25, -90.75, -92.5, 62.75, 169.25, 333.5, 28.75, -84.75, 349.5,
|
|
134.75, 409.25, -116.5
|
|
]
|
|
y_np = np.array(y_data, dtype=np.float32).reshape(x_shape) / 255.
|
|
|
|
self._testContrast(x_np, y_np, contrast_factor=2.0)
|
|
|
|
def testBatchContrast(self):
|
|
x_shape = [2, 1, 2, 3]
|
|
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
|
|
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
y_data = [0, 0, 0, 81, 200, 255, 10, 0, 255, 116, 255, 0]
|
|
y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
self._testContrast(x_np, y_np, contrast_factor=2.0)
|
|
|
|
def _adjustContrastNp(self, x_np, contrast_factor):
|
|
mean = np.mean(x_np, (1, 2), keepdims=True)
|
|
y_np = mean + contrast_factor * (x_np - mean)
|
|
return y_np
|
|
|
|
def _adjustContrastTf(self, x_np, contrast_factor):
|
|
with self.session():
|
|
x = array_ops.placeholder(np.float32)
|
|
with self.test_scope():
|
|
y = image_ops.adjust_contrast(x, contrast_factor)
|
|
y_tf = y.eval({x: x_np})
|
|
return y_tf
|
|
|
|
def testRandomContrast(self):
|
|
x_shapes = [
|
|
[1, 2, 2, 3],
|
|
[2, 1, 2, 3],
|
|
[1, 2, 2, 3],
|
|
[2, 5, 5, 3],
|
|
[2, 1, 1, 3],
|
|
]
|
|
for x_shape in x_shapes:
|
|
x_np = np.random.rand(*x_shape) * 255.
|
|
contrast_factor = np.random.rand() * 2.0 + 0.1
|
|
y_np = self._adjustContrastNp(x_np, contrast_factor)
|
|
y_tf = self._adjustContrastTf(x_np, contrast_factor)
|
|
self.assertAllClose(y_tf, y_np, rtol=1e-5, atol=1e-5)
|
|
|
|
|
|
class AdjustHueTest(xla_test.XLATestCase):
|
|
|
|
def testAdjustNegativeHue(self):
|
|
x_shape = [2, 2, 3]
|
|
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
|
|
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
delta = -0.25
|
|
y_data = [0, 13, 1, 54, 226, 59, 8, 234, 150, 255, 39, 1]
|
|
y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
with self.session():
|
|
x = array_ops.placeholder(x_np.dtype, shape=x_shape)
|
|
flt_x = image_ops.convert_image_dtype(x, dtypes.float32)
|
|
with self.test_scope():
|
|
y = gen_image_ops.adjust_hue(flt_x, delta)
|
|
y = image_ops.convert_image_dtype(y, x.dtype, saturate=True)
|
|
y_tf = y.eval({x: x_np})
|
|
self.assertAllEqual(y_tf, y_np)
|
|
|
|
def testAdjustPositiveHue(self):
|
|
x_shape = [2, 2, 3]
|
|
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
|
|
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
delta = 0.25
|
|
y_data = [13, 0, 11, 226, 54, 221, 234, 8, 92, 1, 217, 255]
|
|
y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
with self.session():
|
|
x = array_ops.placeholder(x_np.dtype, shape=x_shape)
|
|
flt_x = image_ops.convert_image_dtype(x, dtypes.float32)
|
|
with self.test_scope():
|
|
y = gen_image_ops.adjust_hue(flt_x, delta)
|
|
y = image_ops.convert_image_dtype(y, x.dtype, saturate=True)
|
|
y_tf = y.eval({x: x_np})
|
|
self.assertAllEqual(y_tf, y_np)
|
|
|
|
def testBatchAdjustHue(self):
|
|
x_shape = [2, 1, 2, 3]
|
|
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
|
|
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
delta = 0.25
|
|
y_data = [13, 0, 11, 226, 54, 221, 234, 8, 92, 1, 217, 255]
|
|
y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
with self.session():
|
|
x = array_ops.placeholder(x_np.dtype, shape=x_shape)
|
|
flt_x = image_ops.convert_image_dtype(x, dtypes.float32)
|
|
with self.test_scope():
|
|
y = gen_image_ops.adjust_hue(flt_x, delta)
|
|
y = image_ops.convert_image_dtype(y, x.dtype, saturate=True)
|
|
y_tf = y.eval({x: x_np})
|
|
self.assertAllEqual(y_tf, y_np)
|
|
|
|
def _adjustHueNp(self, x_np, delta_h):
|
|
self.assertEqual(x_np.shape[-1], 3)
|
|
x_v = x_np.reshape([-1, 3])
|
|
y_v = np.ndarray(x_v.shape, dtype=x_v.dtype)
|
|
channel_count = x_v.shape[0]
|
|
for i in xrange(channel_count):
|
|
r = x_v[i][0]
|
|
g = x_v[i][1]
|
|
b = x_v[i][2]
|
|
h, s, v = colorsys.rgb_to_hsv(r, g, b)
|
|
h += delta_h
|
|
h = math.fmod(h + 10.0, 1.0)
|
|
r, g, b = colorsys.hsv_to_rgb(h, s, v)
|
|
y_v[i][0] = r
|
|
y_v[i][1] = g
|
|
y_v[i][2] = b
|
|
return y_v.reshape(x_np.shape)
|
|
|
|
def _adjustHueTf(self, x_np, delta_h):
|
|
with self.session():
|
|
x = array_ops.placeholder(dtypes.float32)
|
|
with self.test_scope():
|
|
y = gen_image_ops.adjust_hue(x, delta_h)
|
|
y_tf = y.eval({x: x_np})
|
|
return y_tf
|
|
|
|
def testAdjustRandomHue(self):
|
|
x_shapes = [
|
|
[2, 2, 3],
|
|
[4, 2, 3],
|
|
[2, 4, 3],
|
|
[2, 5, 3],
|
|
[1000, 1, 3],
|
|
]
|
|
test_styles = [
|
|
"all_random",
|
|
"rg_same",
|
|
"rb_same",
|
|
"gb_same",
|
|
"rgb_same",
|
|
]
|
|
for x_shape in x_shapes:
|
|
for test_style in test_styles:
|
|
x_np = np.random.rand(*x_shape) * 255.
|
|
delta_h = np.random.rand() * 2.0 - 1.0
|
|
if test_style == "all_random":
|
|
pass
|
|
elif test_style == "rg_same":
|
|
x_np[..., 1] = x_np[..., 0]
|
|
elif test_style == "rb_same":
|
|
x_np[..., 2] = x_np[..., 0]
|
|
elif test_style == "gb_same":
|
|
x_np[..., 2] = x_np[..., 1]
|
|
elif test_style == "rgb_same":
|
|
x_np[..., 1] = x_np[..., 0]
|
|
x_np[..., 2] = x_np[..., 0]
|
|
else:
|
|
raise AssertionError("Invalid test style: %s" % (test_style))
|
|
y_np = self._adjustHueNp(x_np, delta_h)
|
|
y_tf = self._adjustHueTf(x_np, delta_h)
|
|
self.assertAllClose(y_tf, y_np, rtol=2e-5, atol=1e-4)
|
|
|
|
def testInvalidShapes(self):
|
|
fused = False
|
|
if not fused:
|
|
# The tests are known to pass with the fused adjust_hue. We will enable
|
|
# them when the fused implementation is the default.
|
|
return
|
|
x_np = np.random.rand(2, 3) * 255.
|
|
delta_h = np.random.rand() * 2.0 - 1.0
|
|
fused = False
|
|
with self.assertRaisesRegex(ValueError, "Shape must be at least rank 3"):
|
|
self._adjustHueTf(x_np, delta_h)
|
|
x_np = np.random.rand(4, 2, 4) * 255.
|
|
delta_h = np.random.rand() * 2.0 - 1.0
|
|
with self.assertRaisesOpError("input must have 3 channels"):
|
|
self._adjustHueTf(x_np, delta_h)
|
|
|
|
|
|
class AdjustSaturationTest(xla_test.XLATestCase):
|
|
|
|
def _adjust_saturation(self, image, saturation_factor):
|
|
image = ops.convert_to_tensor(image, name="image")
|
|
orig_dtype = image.dtype
|
|
flt_image = image_ops.convert_image_dtype(image, dtypes.float32)
|
|
with self.test_scope():
|
|
saturation_adjusted_image = gen_image_ops.adjust_saturation(
|
|
flt_image, saturation_factor)
|
|
return image_ops.convert_image_dtype(saturation_adjusted_image, orig_dtype)
|
|
|
|
def testHalfSaturation(self):
|
|
x_shape = [2, 2, 3]
|
|
x_rgb_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
|
|
x_np = np.array(x_rgb_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
saturation_factor = 0.5
|
|
y_rgb_data = [6, 9, 13, 140, 180, 226, 135, 121, 234, 172, 255, 128]
|
|
y_np = np.array(y_rgb_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
with self.session():
|
|
x = array_ops.placeholder(x_np.dtype, shape=x_shape)
|
|
y = self._adjust_saturation(x, saturation_factor)
|
|
y_tf = y.eval({x: x_np})
|
|
self.assertAllEqual(y_tf, y_np)
|
|
|
|
def testTwiceSaturation(self):
|
|
x_shape = [2, 2, 3]
|
|
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
|
|
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
saturation_factor = 2.0
|
|
y_data = [0, 5, 13, 0, 106, 226, 30, 0, 234, 89, 255, 0]
|
|
y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape)
|
|
|
|
with self.session():
|
|
x = array_ops.placeholder(x_np.dtype, shape=x_shape)
|
|
y = self._adjust_saturation(x, saturation_factor)
|
|
y_tf = y.eval({x: x_np})
|
|
self.assertAllEqual(y_tf, y_np)
|
|
|
|
def _adjustSaturationNp(self, x_np, scale):
|
|
self.assertEqual(x_np.shape[-1], 3)
|
|
x_v = x_np.reshape([-1, 3])
|
|
y_v = np.ndarray(x_v.shape, dtype=x_v.dtype)
|
|
channel_count = x_v.shape[0]
|
|
for i in xrange(channel_count):
|
|
r = x_v[i][0]
|
|
g = x_v[i][1]
|
|
b = x_v[i][2]
|
|
h, s, v = colorsys.rgb_to_hsv(r, g, b)
|
|
s *= scale
|
|
s = min(1.0, max(0.0, s))
|
|
r, g, b = colorsys.hsv_to_rgb(h, s, v)
|
|
y_v[i][0] = r
|
|
y_v[i][1] = g
|
|
y_v[i][2] = b
|
|
return y_v.reshape(x_np.shape)
|
|
|
|
def testAdjustRandomSaturation(self):
|
|
x_shapes = [
|
|
[2, 2, 3],
|
|
[4, 2, 3],
|
|
[2, 4, 3],
|
|
[2, 5, 3],
|
|
[1000, 1, 3],
|
|
]
|
|
test_styles = [
|
|
"all_random",
|
|
"rg_same",
|
|
"rb_same",
|
|
"gb_same",
|
|
"rgb_same",
|
|
]
|
|
with self.session():
|
|
for x_shape in x_shapes:
|
|
for test_style in test_styles:
|
|
x_np = np.random.rand(*x_shape) * 255.
|
|
scale = np.random.rand()
|
|
if test_style == "all_random":
|
|
pass
|
|
elif test_style == "rg_same":
|
|
x_np[..., 1] = x_np[..., 0]
|
|
elif test_style == "rb_same":
|
|
x_np[..., 2] = x_np[..., 0]
|
|
elif test_style == "gb_same":
|
|
x_np[..., 2] = x_np[..., 1]
|
|
elif test_style == "rgb_same":
|
|
x_np[..., 1] = x_np[..., 0]
|
|
x_np[..., 2] = x_np[..., 0]
|
|
else:
|
|
raise AssertionError("Invalid test style: %s" % (test_style))
|
|
y_baseline = self._adjustSaturationNp(x_np, scale)
|
|
x = array_ops.placeholder(dtypes.float32, shape=x_shape)
|
|
with self.test_scope():
|
|
y_fused = self._adjust_saturation(x,
|
|
scale).eval(feed_dict={x: x_np})
|
|
self.assertAllClose(y_fused, y_baseline, rtol=2e-5, atol=1e-5)
|
|
|
|
|
|
class ResizeNearestNeighborTest(xla_test.XLATestCase):
|
|
# TODO(ilch): Wrap each test with `for dtype in self.float_types:`
|
|
# Some work to understand how that should be done was presented here:
|
|
# cl/227850213
|
|
|
|
def _assertForwardOpMatchesExpected(self,
|
|
image_np,
|
|
target_shape,
|
|
expected=None,
|
|
large_tolerance=False,
|
|
align_corners=True):
|
|
if expected is None:
|
|
self.fail("expected must be specified")
|
|
with self.session() as sess, self.test_scope():
|
|
image = array_ops.placeholder(image_np.dtype)
|
|
resized = gen_image_ops.resize_nearest_neighbor(
|
|
image, target_shape, align_corners=align_corners)
|
|
out = sess.run(resized, {image: image_np[np.newaxis, :, :, np.newaxis]})
|
|
if large_tolerance:
|
|
self.assertAllClose(
|
|
expected[np.newaxis, :, :, np.newaxis], out, rtol=2e-4, atol=2e-4)
|
|
else:
|
|
self.assertAllClose(expected[np.newaxis, :, :, np.newaxis], out)
|
|
|
|
def testAlignCorners2x2To1x1(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1, 2], [3, 4]], dtype=np.float32), [1, 1],
|
|
expected=np.array([[1]], dtype=np.float32))
|
|
|
|
def testAlignCorners1x1To2x2(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1]], dtype=np.float32), [2, 2],
|
|
expected=np.array([[1, 1], [1, 1]], dtype=np.float32))
|
|
|
|
def testAlignCorners1x1To3x3(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1]], dtype=np.float32), [3, 3],
|
|
expected=np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=np.float32))
|
|
|
|
def testAlignCorners2x2To3x3(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1, 2], [3, 4]], dtype=np.float32), [3, 3],
|
|
expected=np.array([[1, 2, 2], [3, 4, 4], [3, 4, 4]], dtype=np.float32))
|
|
|
|
def testAlignCorners2x2To4x4(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1, 2], [3, 4]], dtype=np.float32), [4, 4],
|
|
expected=np.array(
|
|
[[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4]],
|
|
dtype=np.float32), large_tolerance=True)
|
|
|
|
def testAlignCorners3x3To2x2(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32), [2, 2],
|
|
expected=np.array([[1, 3], [7, 9]], dtype=np.float32))
|
|
|
|
def testAlignCorners4x4To3x3(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array(
|
|
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]],
|
|
dtype=np.float32), [3, 3],
|
|
expected=np.array([[1, 3, 4], [9, 11, 12], [13, 15, 16]],
|
|
dtype=np.float32))
|
|
|
|
def testAlignCorners3x3To4x4(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32), [4, 4],
|
|
expected=np.array(
|
|
[[1, 2, 2, 3], [4, 5, 5, 6], [4, 5, 5, 6], [7, 8, 8, 9]],
|
|
dtype=np.float32))
|
|
|
|
def testAlignCorners3x3To6x6(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32), [6, 6],
|
|
expected=np.array(
|
|
[[1, 1, 2, 2, 3, 3], [1, 1, 2, 2, 3, 3], [4, 4, 5, 5, 6, 6],
|
|
[4, 4, 5, 5, 6, 6], [7, 7, 8, 8, 9, 9], [7, 7, 8, 8, 9, 9]],
|
|
dtype=np.float32))
|
|
|
|
def testAlignCorners3x3To9x9(self):
|
|
# The expected matrix might look uneven in terms of how many of each number
|
|
# there is, but this is an artifact of doing the dilation and convolution
|
|
# iteratively. The behavior is less esoteric in the 3x3To12x12 case below.
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32), [9, 9],
|
|
expected=np.array(
|
|
[[1, 1, 2, 2, 2, 2, 3, 3, 3], [1, 1, 2, 2, 2, 2, 3, 3, 3],
|
|
[4, 4, 5, 5, 5, 5, 6, 6, 6], [4, 4, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 5, 5, 5, 5, 6, 6, 6], [4, 4, 5, 5, 5, 5, 6, 6, 6],
|
|
[7, 7, 8, 8, 8, 8, 9, 9, 9], [7, 7, 8, 8, 8, 8, 9, 9, 9],
|
|
[7, 7, 8, 8, 8, 8, 9, 9, 9]],
|
|
dtype=np.float32))
|
|
|
|
def testAlignCorners3x3To12x12(self):
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32), [12, 12],
|
|
expected=np.array([[1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3],
|
|
[1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3],
|
|
[1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9],
|
|
[7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9],
|
|
[7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9]],
|
|
dtype=np.float32))
|
|
|
|
def testBFloat16(self):
|
|
img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
|
dtype=dtypes.bfloat16.as_numpy_dtype)
|
|
self._assertForwardOpMatchesExpected(img, [4, 4], expected=np.array(
|
|
[[1, 2, 2, 3], [4, 5, 5, 6], [4, 5, 5, 6], [7, 8, 8, 9]],
|
|
dtype=np.float32))
|
|
|
|
def testAlignCorners3x3To12x12_uint8(self):
|
|
# TODO(b/72099414): enable the test for TPU when the issue is fixed.
|
|
if (self.device not in ["XLA_GPU", "XLA_CPU"]):
|
|
return
|
|
# Ensure that resize with convolution works on XLA/GPU for integer types
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8), [12, 12],
|
|
expected=np.array([[1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3],
|
|
[1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3],
|
|
[1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6],
|
|
[7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9],
|
|
[7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9],
|
|
[7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9]],
|
|
dtype=np.uint8))
|
|
|
|
|
|
class ResizeBilinearTest(parameterized.TestCase, xla_test.XLATestCase):
|
|
|
|
def _assertForwardOpMatchesExpected(self,
|
|
image_np,
|
|
target_shape,
|
|
expected=None,
|
|
large_tolerance=False,
|
|
align_corners=True):
|
|
if expected is None:
|
|
self.fail("expected must be specified")
|
|
with self.session() as sess, self.test_scope():
|
|
image = array_ops.placeholder(image_np.dtype)
|
|
resized = gen_image_ops.resize_bilinear(
|
|
image, target_shape, align_corners=align_corners)
|
|
out = sess.run(resized, {image: image_np[np.newaxis, :, :, np.newaxis]})
|
|
if large_tolerance:
|
|
self.assertAllClose(
|
|
expected[np.newaxis, :, :, np.newaxis], out, rtol=0.1, atol=0.01)
|
|
else:
|
|
self.assertAllClose(expected[np.newaxis, :, :, np.newaxis], out)
|
|
|
|
@parameterized.named_parameters(
|
|
[("1x2To3x3", 1, 2, 3, 3), ("2x2To1x1", 2, 2, 1, 1),
|
|
("2x2To3x3", 2, 2, 3, 3), ("3x3To2x2", 3, 3, 2, 2),
|
|
("4x4To3x3", 4, 4, 3, 3), ("3x3To9x9", 3, 3, 9, 9),
|
|
("4x4To8x8", 4, 4, 8, 8), ("8x8To16x16", 8, 8, 16, 16),
|
|
("64x64To512x512", 64, 64, 512, 512),
|
|
("80x80To512x512", 80, 80, 512, 512),
|
|
("96x96To512x512", 96, 96, 512, 512),
|
|
("112x112To512x512", 112, 112, 512, 512),
|
|
("256x48To2048x384", 256, 48, 2048, 384),
|
|
("320x60To2048x384", 320, 60, 2048, 384),
|
|
("448x84To2048x384", 448, 84, 2048, 384),
|
|
("69x69To545x545", 69, 69, 545, 545),
|
|
("86x86To545x545", 86, 86, 545, 545),
|
|
("103x103To545x545", 103, 103, 545, 545),
|
|
("120x120To545x545", 120, 120, 545, 545),
|
|
("57x57To456x456", 57, 57, 456, 456),
|
|
("72x72To456x456", 72, 72, 456, 456),
|
|
("86x86To456x456", 86, 86, 456, 456),
|
|
("100x100To456x456", 100, 100, 456, 456),
|
|
("64x64To224x224", 64, 64, 224, 224),
|
|
("128x128To224x224", 128, 128, 224, 224),
|
|
("256x256To224x224", 256, 256, 224, 224),
|
|
("512x512To224x224", 512, 512, 224, 224),
|
|
("64x64To299x299", 64, 64, 299, 299),
|
|
("128x128To299x299", 128, 128, 299, 299),
|
|
("256x256To299x299", 256, 256, 299, 299),
|
|
("512x512To299x299", 512, 512, 299, 299),
|
|
("224x224To224x224", 224, 224, 224, 224)] +
|
|
# On windows, initialization of the following or any larger np.arrays
|
|
# where we set the dtype explicitly fails with:
|
|
# TypeError: expected number, got int
|
|
([] if os.name == "nt" else [("224x224To224x224-bfloat", 224, 224, 224,
|
|
224, dtypes.bfloat16.as_numpy_dtype)]),
|
|
# This test is disabled because it is very slow. It is slow because
|
|
# 383 is prime, 383 and 2047 are coprime, and 2048 is large.
|
|
# ("Disabled_384x72To2048x384", 384, 72, 2048, 384),
|
|
)
|
|
|
|
def test(self, src_y, src_x, dst_y, dst_x, dtype=np.float32):
|
|
if test.is_built_with_rocm():
|
|
self.skipTest("Disabled on ROCm, because it runs out of memory")
|
|
|
|
max_y = max(src_y - 1, 1) * (dst_y - 1) + 1
|
|
max_x = max(src_x - 1, 1) * (dst_x - 1) + 1
|
|
|
|
input_data = [
|
|
range(y * max_x, (y + 1) * max_x, max(dst_x - 1, 1))
|
|
for y in range(0, max_y, max(dst_y - 1, 1))
|
|
]
|
|
|
|
result = [
|
|
range(y * max_x, (y + 1) * max_x, max(src_x - 1, 1))
|
|
for y in range(0, max_y, max(src_y - 1, 1))
|
|
]
|
|
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array(input_data, dtype=dtype), [dst_y, dst_x],
|
|
expected=np.array(result, dtype=np.float32),
|
|
large_tolerance=True)
|
|
|
|
|
|
class ResizeBilinearGradTest(parameterized.TestCase, xla_test.XLATestCase):
|
|
|
|
def _assertBackwardOpMatchesExpected(self,
|
|
grads_np,
|
|
input_shape=None,
|
|
dtype=None,
|
|
expected=None,
|
|
large_tolerance=False):
|
|
if input_shape is None:
|
|
self.fail("input_shape must be specified")
|
|
if expected is None:
|
|
self.fail("expected must be specified")
|
|
with self.session() as sess, self.test_scope():
|
|
dtype = dtype or np.float32
|
|
grads = array_ops.placeholder(np.float32)
|
|
resized = gen_image_ops.resize_bilinear_grad(
|
|
grads,
|
|
np.zeros([1, input_shape[0], input_shape[1], 1], dtype=dtype),
|
|
align_corners=True)
|
|
out = sess.run(resized, {grads: grads_np[np.newaxis, :, :, np.newaxis]})
|
|
if large_tolerance:
|
|
self.assertAllClose(
|
|
expected[np.newaxis, :, :, np.newaxis], out, rtol=0.1, atol=0.01)
|
|
else:
|
|
self.assertAllCloseAccordingToType(
|
|
expected[np.newaxis, :, :, np.newaxis], out)
|
|
|
|
@parameterized.named_parameters(
|
|
("1x3To1x3", 1, 2, 1, 3),
|
|
("1x2To3x2", 1, 2, 3, 2),
|
|
("1x2To3x3", 1, 2, 3, 3),
|
|
("1x1To4x1", 1, 1, 4, 1),
|
|
("1x1To5x1", 1, 1, 5, 1),
|
|
("2x2To1x1", 2, 2, 1, 1),
|
|
("2x2To3x3", 2, 2, 3, 3),
|
|
("3x3To2x2", 3, 3, 2, 2),
|
|
("4x4To3x3", 4, 4, 3, 3),
|
|
("3x3To9x9", 3, 3, 9, 9),
|
|
("4x4To8x8", 4, 4, 8, 8),
|
|
("8x8To16x16", 8, 8, 16, 16),
|
|
("2x64To2x512", 2, 64, 2, 512),
|
|
("64x64To512x512", 64, 64, 512, 512),
|
|
("80x80To512x512", 80, 80, 512, 512),
|
|
("96x96To512x512", 96, 96, 512, 512),
|
|
("112x112To512x512", 112, 112, 512, 512),
|
|
# ("Disabled_256x48To2048x384", 256, 48, 2048, 384),
|
|
# ("Disabled_320x60To2048x384", 320, 60, 2048, 384),
|
|
# ("Disabled_448x84To2048x384", 448, 84, 2048, 384),
|
|
("69x69To545x545", 69, 69, 545, 545),
|
|
("86x86To545x545", 86, 86, 545, 545),
|
|
("103x103To545x545", 103, 103, 545, 545),
|
|
("120x120To545x545", 120, 120, 545, 545),
|
|
("57x57To456x456", 57, 57, 456, 456),
|
|
("72x72To456x456", 72, 72, 456, 456),
|
|
("86x86To456x456", 86, 86, 456, 456),
|
|
("100x100To456x456", 100, 100, 456, 456),
|
|
# This test is disabled because it is very slow. It is slow because
|
|
# 383 is prime, 383 and 2047 are coprime, and 2048 is large.
|
|
# ("Disabled_384x72To2048x384", 384, 72, 2048, 384),
|
|
)
|
|
|
|
def test(self, src_y, src_x, dst_y, dst_x):
|
|
def GetRow(src, dst):
|
|
if src == 1:
|
|
return np.array([[max(dst**2 - dst, 1)]])
|
|
row = [0] * src
|
|
for i in range(0, (dst - 1) * max(src - 1, 1) + 1, src - 1):
|
|
prev = int(math.floor(i / max(dst - 1, 1)))
|
|
row[prev] += max(dst - 1, 1) - i % max(dst - 1, 1)
|
|
if prev + 1 < src:
|
|
row[prev + 1] += i % max(dst - 1, 1)
|
|
return np.array([row])
|
|
|
|
input_element = max(dst_x - 1, 1) * max(dst_y - 1, 1)
|
|
input_data = [[input_element] * dst_x] * dst_y
|
|
result = GetRow(src_x, dst_x) * np.transpose(GetRow(src_y, dst_y))
|
|
self._assertBackwardOpMatchesExpected(
|
|
np.array(input_data, dtype=np.float32), [src_y, src_x],
|
|
expected=np.array(result, dtype=np.float32),
|
|
large_tolerance=True)
|
|
|
|
|
|
class ResizeBilinearNonAlignCornersTest(xla_test.XLATestCase):
|
|
|
|
def _assertForwardOpMatchesExpected(self,
|
|
image_np,
|
|
target_shape,
|
|
expected=None,
|
|
large_tolerance=False,
|
|
align_corners=True):
|
|
if expected is None:
|
|
self.fail("expected must be specified")
|
|
with self.session() as sess, self.test_scope():
|
|
image = array_ops.placeholder(image_np.dtype)
|
|
resized = gen_image_ops.resize_bilinear(
|
|
image, target_shape, align_corners=align_corners)
|
|
out = sess.run(resized, {image: image_np[np.newaxis, :, :, np.newaxis]})
|
|
if large_tolerance:
|
|
self.assertAllClose(
|
|
expected[np.newaxis, :, :, np.newaxis], out, rtol=0.1, atol=0.01)
|
|
else:
|
|
self.assertAllClose(expected[np.newaxis, :, :, np.newaxis], out)
|
|
|
|
def testNonAlignCorners3x2To6x4(self):
|
|
input_data = [[64, 32], [32, 64], [50, 100]]
|
|
expected_data = [[64.0, 48.0, 32.0, 32.0], [48.0, 48.0, 48.0, 48.0],
|
|
[32.0, 48.0, 64.0, 64.0], [41.0, 61.5, 82.0, 82.0],
|
|
[50.0, 75.0, 100.0, 100.0], [50.0, 75.0, 100.0, 100.0]]
|
|
for dtype in self.float_types:
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array(input_data, dtype=dtype), [6, 4],
|
|
expected=np.array(expected_data, dtype=np.float32),
|
|
align_corners=False)
|
|
|
|
def testNonAlignCorners6x4To3x2(self):
|
|
input_data = [[127, 127, 64, 64], [127, 127, 64, 64], [64, 64, 127, 127],
|
|
[64, 64, 127, 127], [50, 50, 100, 100], [50, 50, 100, 100]]
|
|
expected_data = [[127, 64], [64, 127], [50, 100]]
|
|
for dtype in self.float_types:
|
|
self._assertForwardOpMatchesExpected(
|
|
np.array(input_data, dtype=dtype), [3, 2],
|
|
expected=np.array(expected_data, dtype=dtype),
|
|
align_corners=False)
|
|
|
|
def testNonAlignCorners3x2To6x4Batch2(self):
|
|
input_data = [[[64, 32], [32, 64], [50, 100]], [[32, 16], [16, 32],
|
|
[25, 50]]]
|
|
expected_data = [[[64.0, 48.0, 32.0, 32.0], [48.0, 48.0, 48.0, 48.0],
|
|
[32.0, 48.0, 64.0, 64.0], [41.0, 61.5, 82.0, 82.0],
|
|
[50.0, 75.0, 100.0, 100.0], [50.0, 75.0, 100.0, 100.0]],
|
|
[[32.0, 24.0, 16.0, 16.0], [24.0, 24.0, 24.0, 24.0],
|
|
[16.0, 24.0, 32.0, 32.0], [20.5, 30.75, 41.0, 41.0],
|
|
[25.0, 37.5, 50.0, 50.0], [25.0, 37.5, 50.0, 50.0]]]
|
|
|
|
for dtype in self.float_types:
|
|
input_image = np.array(input_data, dtype=dtype)
|
|
expected = np.array(expected_data, dtype=dtype)
|
|
with self.session() as sess, self.test_scope():
|
|
image = array_ops.placeholder(input_image.dtype)
|
|
resized = gen_image_ops.resize_bilinear(
|
|
image, [6, 4], align_corners=False)
|
|
out = sess.run(resized, {image: input_image[:, :, :, np.newaxis]})
|
|
self.assertAllClose(expected[:, :, :, np.newaxis], out)
|
|
|
|
|
|
class NonMaxSuppressionTest(xla_test.XLATestCase):
|
|
|
|
def testNMS128From1024(self):
|
|
num_boxes = 1024
|
|
boxes_np = np.random.normal(50, 10, (num_boxes, 4)).astype("f4")
|
|
scores_np = np.random.normal(0.5, 0.1, (num_boxes,)).astype("f4")
|
|
|
|
max_output_size = 128
|
|
iou_threshold_np = np.array(0.5, dtype=np.float32)
|
|
score_threshold_np = np.array(0.0, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
iou_threshold = array_ops.placeholder(iou_threshold_np.dtype,
|
|
iou_threshold_np.shape)
|
|
score_threshold = array_ops.placeholder(score_threshold_np.dtype,
|
|
score_threshold_np.shape)
|
|
with self.test_scope():
|
|
selected_indices = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
score_threshold=score_threshold,
|
|
pad_to_max_output_size=True)
|
|
inputs_feed = {
|
|
boxes: boxes_np,
|
|
scores: scores_np,
|
|
score_threshold: score_threshold_np,
|
|
iou_threshold: iou_threshold_np
|
|
}
|
|
(indices_tf, _) = sess.run(selected_indices, feed_dict=inputs_feed)
|
|
|
|
self.assertEqual(indices_tf.size, max_output_size)
|
|
|
|
def testNMS3From6Boxes(self):
|
|
# Three boxes are selected based on IOU.
|
|
boxes_data = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9],
|
|
[0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]]
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
|
|
scores_data = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3]
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
max_output_size = 3
|
|
iou_threshold_np = np.array(0.5, dtype=np.float32)
|
|
score_threshold_np = np.array(0.0, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
iou_threshold = array_ops.placeholder(iou_threshold_np.dtype,
|
|
iou_threshold_np.shape)
|
|
score_threshold = array_ops.placeholder(score_threshold_np.dtype,
|
|
score_threshold_np.shape)
|
|
with self.test_scope():
|
|
selected_indices = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
score_threshold=score_threshold,
|
|
pad_to_max_output_size=True)
|
|
inputs_feed = {
|
|
boxes: boxes_np,
|
|
scores: scores_np,
|
|
score_threshold: score_threshold_np,
|
|
iou_threshold: iou_threshold_np
|
|
}
|
|
(indices_tf, num_valid) = sess.run(
|
|
selected_indices, feed_dict=inputs_feed)
|
|
|
|
self.assertEqual(indices_tf.size, max_output_size)
|
|
self.assertEqual(num_valid, 3)
|
|
self.assertAllClose(indices_tf[:num_valid], [3, 0, 5])
|
|
|
|
def testNMS3Then2WithScoreThresh(self):
|
|
# Three boxes are selected based on IOU.
|
|
# One is filtered out by score threshold.
|
|
|
|
boxes_data = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9],
|
|
[0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]]
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
|
|
scores_data = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3]
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
max_output_size = 3
|
|
iou_threshold_np = np.array(0.5, dtype=np.float32)
|
|
score_threshold_np = np.array(0.4, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
iou_threshold = array_ops.placeholder(iou_threshold_np.dtype,
|
|
iou_threshold_np.shape)
|
|
score_threshold = array_ops.placeholder(score_threshold_np.dtype,
|
|
score_threshold_np.shape)
|
|
with self.test_scope():
|
|
selected_indices = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
score_threshold=score_threshold,
|
|
pad_to_max_output_size=True)
|
|
inputs_feed = {
|
|
boxes: boxes_np,
|
|
scores: scores_np,
|
|
iou_threshold: iou_threshold_np,
|
|
score_threshold: score_threshold_np
|
|
}
|
|
(indices_tf, num_valid) = sess.run(
|
|
selected_indices, feed_dict=inputs_feed)
|
|
|
|
self.assertEqual(indices_tf.size, max_output_size)
|
|
self.assertEqual(num_valid, 2)
|
|
self.assertAllClose(indices_tf[:num_valid], [3, 0])
|
|
|
|
def testNMS3Then1WithScoreMaxThresh(self):
|
|
# Three boxes are selected based on IOU.
|
|
# One is filtered out by score threshold.
|
|
# One is filtered out by max_output_size.
|
|
|
|
boxes_data = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9],
|
|
[0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]]
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
|
|
scores_data = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3]
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
max_output_size = 1
|
|
iou_threshold_np = np.array(0.5, dtype=np.float32)
|
|
score_threshold_np = np.array(0.4, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
iou_threshold = array_ops.placeholder(iou_threshold_np.dtype,
|
|
iou_threshold_np.shape)
|
|
score_threshold = array_ops.placeholder(score_threshold_np.dtype,
|
|
score_threshold_np.shape)
|
|
with self.test_scope():
|
|
selected_indices = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
score_threshold=score_threshold,
|
|
pad_to_max_output_size=True)
|
|
inputs_feed = {
|
|
boxes: boxes_np,
|
|
scores: scores_np,
|
|
iou_threshold: iou_threshold_np,
|
|
score_threshold: score_threshold_np
|
|
}
|
|
(indices_tf, num_valid) = sess.run(
|
|
selected_indices, feed_dict=inputs_feed)
|
|
|
|
self.assertEqual(indices_tf.size, max_output_size)
|
|
self.assertEqual(num_valid, 1)
|
|
self.assertAllClose(indices_tf[:num_valid], [3])
|
|
|
|
def testSelectFromContinuousOverLap(self):
|
|
# Tests that a suppressed box does not itself suppress other boxes.
|
|
|
|
boxes_data = [[0, 0, 1, 1], [0, 0.2, 1, 1.2], [0, 0.4, 1, 1.4],
|
|
[0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 3]]
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
|
|
scores_data = [0.9, 0.75, 0.6, 0.5, 0.4, 0.3]
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
max_output_size = 3
|
|
iou_threshold_np = np.array(0.5, dtype=np.float32)
|
|
score_threshold_np = np.array(0.1, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
iou_threshold = array_ops.placeholder(iou_threshold_np.dtype,
|
|
iou_threshold_np.shape)
|
|
score_threshold = array_ops.placeholder(score_threshold_np.dtype,
|
|
score_threshold_np.shape)
|
|
with self.test_scope():
|
|
selected_indices = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
score_threshold=score_threshold,
|
|
pad_to_max_output_size=True)
|
|
inputs_feed = {
|
|
boxes: boxes_np,
|
|
scores: scores_np,
|
|
iou_threshold: iou_threshold_np,
|
|
score_threshold: score_threshold_np
|
|
}
|
|
(indices_tf, num_valid) = sess.run(
|
|
selected_indices, feed_dict=inputs_feed)
|
|
|
|
self.assertEqual(indices_tf.size, max_output_size)
|
|
self.assertEqual(num_valid, 3)
|
|
self.assertAllClose(indices_tf[:num_valid], [0, 2, 4])
|
|
|
|
|
|
class BatchedNonMaxSuppressionCorrectnessTest(xla_test.XLATestCase):
|
|
|
|
def testBatchedNMSFrom6(self):
|
|
boxes_data = [[[0, 0, 1, 1], [3, 3, 4, 4], [0, 0.4, 1, 1.4],
|
|
[0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]],
|
|
[[0, 2, 1, 2], [0, 0.8, 1, 1.8], [0, 0.6, 1, 1.6],
|
|
[0, 0.4, 1, 1.4], [0, 0.2, 1, 1.2], [0, 0, 1, 1]]]
|
|
scores_data = [[0.9, 0.7, 0.6, 0.5, 0.4, 0.3],
|
|
[0.8, 0.7, 0.6, 0.5, 0.4, 0.3]]
|
|
max_output_size = 6
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
pad_to_max_output_size=True,
|
|
sorted_input=True,
|
|
canonicalized_coordinates=True)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
invalid_index = 0
|
|
self.assertAllEqual([[0, 1, 2, 4, 5, invalid_index],
|
|
[0, 1, 3, 5, invalid_index, invalid_index]],
|
|
indices_output)
|
|
self.assertAllEqual([5, 4], num_valid_output)
|
|
|
|
def testBatchedNMSFrom6Max3(self):
|
|
boxes_data = [[[0, 0, 1, 1], [3, 3, 4, 4], [0, 0.4, 1, 1.4],
|
|
[0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]],
|
|
[[0, 2, 1, 2], [0, 0.8, 1, 1.8], [0, 0.6, 1, 1.6],
|
|
[0, 0.4, 1, 1.4], [0, 0.2, 1, 1.2], [0, 0, 1, 1]]]
|
|
scores_data = [[0.9, 0.7, 0.6, 0.5, 0.4, 0.3],
|
|
[0.8, 0.7, 0.6, 0.5, 0.4, 0.3]]
|
|
max_output_size = 3
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
pad_to_max_output_size=True,
|
|
sorted_input=True,
|
|
canonicalized_coordinates=True)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
self.assertAllEqual([[0, 1, 2], [0, 1, 3]], indices_output)
|
|
self.assertAllEqual([3, 3], num_valid_output)
|
|
|
|
def testBatchedNMSSingleFrom6Max3(self):
|
|
boxes_data = [[0, 0, 1, 1], [3, 3, 4, 4], [0, 0.4, 1, 1.4],
|
|
[0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]]
|
|
scores_data = [0.9, 0.7, 0.6, 0.5, 0.4, 0.3]
|
|
max_output_size = 3
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
pad_to_max_output_size=True,
|
|
sorted_input=True,
|
|
canonicalized_coordinates=True)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
self.assertAllEqual([0, 1, 2], indices_output)
|
|
self.assertAllEqual(3, num_valid_output)
|
|
|
|
def testBatchedNMSSingleFrom6NoPad(self):
|
|
boxes_data = [[0, 0, 1, 1], [3, 3, 4, 4], [0, 0.4, 1, 1.4],
|
|
[0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]]
|
|
scores_data = [0.9, 0.7, 0.6, 0.5, 0.4, 0.3]
|
|
max_output_size = 6
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
sorted_input=True,
|
|
canonicalized_coordinates=True)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
self.assertAllEqual([0, 1, 2, 4, 5], indices_output)
|
|
self.assertAllEqual(5, num_valid_output)
|
|
|
|
def testBatchedNMSBatchDimsFrom6Max3(self):
|
|
boxes_data = [[[[0, 0, 1, 1], [3, 3, 4, 4], [0, 0.4, 1, 1.4],
|
|
[0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]],
|
|
[[0, 2, 1, 2], [0, 0.8, 1, 1.8], [0, 0.6, 1, 1.6],
|
|
[0, 0.4, 1, 1.4], [0, 0.2, 1, 1.2], [0, 0, 1, 1]]]]
|
|
scores_data = [[[0.9, 0.7, 0.6, 0.5, 0.4, 0.3],
|
|
[0.8, 0.7, 0.6, 0.5, 0.4, 0.3]]]
|
|
max_output_size = 3
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
pad_to_max_output_size=True,
|
|
sorted_input=True,
|
|
canonicalized_coordinates=True)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
self.assertAllEqual([[[0, 1, 2], [0, 1, 3]]], indices_output)
|
|
self.assertAllEqual([[3, 3]], num_valid_output)
|
|
|
|
def testBatchedNMSScoreThresholdFrom6Max3(self):
|
|
boxes_data = [[[0, 0, 1, 1], [3, 3, 4, 4], [0, 0.4, 1, 1.4],
|
|
[0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]],
|
|
[[0, 2, 1, 2], [0, 0.8, 1, 1.8], [0, 0.6, 1, 1.6],
|
|
[0, 0.4, 1, 1.4], [0, 0.2, 1, 1.2], [0, 0, 1, 1]]]
|
|
scores_data = [[0.9, 0.7, 0.6, 0.4, 0.3, 0.2],
|
|
[0.8, 0.7, 0.6, 0.4, 0.3, 0.1]]
|
|
max_output_size = 3
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
score_threshold=0.5,
|
|
pad_to_max_output_size=True,
|
|
sorted_input=True,
|
|
canonicalized_coordinates=True)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
invalid_index = 0
|
|
self.assertAllEqual([3, 2], num_valid_output)
|
|
self.assertAllEqual([[0, 1, 2], [0, 1, invalid_index]], indices_output)
|
|
|
|
def testBatchedNMSUnsortedInputFrom6(self):
|
|
boxes_data = [[[0, 2, 1, 2], [3, 3, 4, 4], [0, 0, 1, 1],
|
|
[0, 0.4, 1, 1.4], [0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8]],
|
|
[[0, 0.4, 1, 1.4], [0, 2, 1, 2], [0, 0.2, 1, 1.2],
|
|
[0, 0, 1, 1], [0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8]]]
|
|
scores_data = [[0.3, 0.7, 0.9, 0.6, 0.5, 0.4],
|
|
[0.5, 0.8, 0.4, 0.3, 0.6, 0.7]]
|
|
max_output_size = 6
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
pad_to_max_output_size=True,
|
|
canonicalized_coordinates=True)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
invalid_index = 0
|
|
self.assertAllEqual([[2, 1, 3, 5, 0, invalid_index],
|
|
[1, 5, 0, 3, invalid_index, invalid_index]],
|
|
indices_output)
|
|
self.assertAllEqual([5, 4], num_valid_output)
|
|
|
|
def testBatchedNMSNoncanonicalizedInputFrom6(self):
|
|
boxes_data = [[[1, 0, 0, 1], [4, 3, 3, 4], [1, 0.4, 0, 1.4],
|
|
[1, 0.6, 0, 1.6], [1, 0.8, 0, 1.8], [1, 2, 0, 2]],
|
|
[[1, 2, 0, 2], [1, 0.8, 0, 1.8], [1, 0.6, 0, 1.6],
|
|
[1, 0.4, 0, 1.4], [1, 0.2, 0, 1.2], [1, 0, 0, 1]]]
|
|
|
|
scores_data = [[0.9, 0.7, 0.6, 0.5, 0.4, 0.3],
|
|
[0.8, 0.7, 0.6, 0.5, 0.4, 0.3]]
|
|
max_output_size = 6
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
pad_to_max_output_size=True,
|
|
sorted_input=True)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
invalid_index = 0
|
|
self.assertAllEqual([[0, 1, 2, 4, 5, invalid_index],
|
|
[0, 1, 3, 5, invalid_index, invalid_index]],
|
|
indices_output)
|
|
self.assertAllEqual([5, 4], num_valid_output)
|
|
|
|
def testBatchedNMSScoreThresholdCanInputsFrom6Max3(self):
|
|
boxes_data = [[[0, 0, 1, 1], [3, 3, 4, 4], [0, 0.4, 1, 1.4],
|
|
[0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]],
|
|
[[0, 2, 1, 2], [0, 0.8, 1, 1.8], [0, 0.6, 1, 1.6],
|
|
[0, 0.4, 1, 1.4], [0, 0.2, 1, 1.2], [0, 0, 1, 1]]]
|
|
scores_data = [[0.9, 0.7, 0.6, 0.4, 0.3, 0.2],
|
|
[0.8, 0.7, 0.6, 0.4, 0.3, 0.1]]
|
|
max_output_size = 3
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
|
|
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
score_threshold=0.5,
|
|
pad_to_max_output_size=True,
|
|
sorted_input=True,
|
|
canonicalized_coordinates=False)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
invalid_index = 0
|
|
self.assertAllEqual([3, 2], num_valid_output)
|
|
self.assertAllEqual([[0, 1, 2], [0, 1, invalid_index]], indices_output)
|
|
|
|
def testBatchedNMSFrom6DynamicInput(self):
|
|
boxes_data = [[[0, 0, 1, 1], [3, 3, 4, 4], [0, 0.4, 1, 1.4],
|
|
[0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]],
|
|
[[0, 2, 1, 2], [0, 0.8, 1, 1.8], [0, 0.6, 1, 1.6],
|
|
[0, 0.4, 1, 1.4], [0, 0.2, 1, 1.2], [0, 0, 1, 1]]]
|
|
scores_data = [[0.9, 0.7, 0.6, 0.5, 0.4, 0.3],
|
|
[0.8, 0.7, 0.6, 0.5, 0.4, 0.3]]
|
|
max_output_size = 6
|
|
iou_threshold = 0.5
|
|
boxes_np = np.array(boxes_data, dtype=np.float32)
|
|
scores_np = np.array(scores_data, dtype=np.float32)
|
|
|
|
with self.session() as sess:
|
|
boxes = array_ops.placeholder(boxes_np.dtype)
|
|
scores = array_ops.placeholder(scores_np.dtype)
|
|
|
|
with self.test_scope():
|
|
(indices, num_valid) = image_ops.non_max_suppression_padded(
|
|
boxes=boxes,
|
|
scores=scores,
|
|
max_output_size=max_output_size,
|
|
iou_threshold=iou_threshold,
|
|
pad_to_max_output_size=True,
|
|
sorted_input=True,
|
|
canonicalized_coordinates=True)
|
|
|
|
inputs = {
|
|
boxes: boxes_np,
|
|
scores: scores_np
|
|
}
|
|
indices_output, num_valid_output = sess.run([indices, num_valid], inputs)
|
|
invalid_index = 0
|
|
self.assertAllEqual([[0, 1, 2, 4, 5, invalid_index],
|
|
[0, 1, 3, 5, invalid_index, invalid_index]],
|
|
indices_output)
|
|
self.assertAllEqual([5, 4], num_valid_output)
|
|
if __name__ == "__main__":
|
|
test.main()
|