The session returned by cached_session uses soft placement, something we don't want for XLA_* devices. With soft placement ops lacking XLA kernels silently fall back and run on the CPU, misleading us into thinking we have more test coverage than we actually do. With this test some tests (rightly) start failing because they were testing ops with dtypes the XLA kernels do not support. I've removed these dtypes from the tests. This CL partially addresses b/132430685. It stubs out "cached_session" and "test_session" to raise errors, so we have more confidence that the compiler is being exercised. However, we still use XLA_* devices to exercise XLA, which has a different code path than xla.compile and tpu.rewrite. This needs to be incrementally fixed. PiperOrigin-RevId: 248437673
154 lines
4.8 KiB
Python
154 lines
4.8 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Test cases for Tensorflow functions."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import function
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
class FunctionTest(xla_test.XLATestCase):
|
|
|
|
def testFunction(self):
|
|
"""Executes a simple TensorFlow function."""
|
|
|
|
def APlus2B(a, b):
|
|
return a + b * 2
|
|
|
|
aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32)
|
|
bval = np.array([5, 6, 7, 8]).reshape([2, 2]).astype(np.float32)
|
|
expected = APlus2B(aval, bval)
|
|
|
|
with self.session():
|
|
|
|
@function.Defun(dtypes.float32, dtypes.float32)
|
|
def Foo(a, b):
|
|
return APlus2B(a, b)
|
|
|
|
a = constant_op.constant(aval, name="a")
|
|
b = constant_op.constant(bval, name="b")
|
|
with self.test_scope():
|
|
call_f = Foo(a, b)
|
|
result = self.evaluate(call_f)
|
|
self.assertAllClose(result, expected, rtol=1e-3)
|
|
|
|
def testNestedFunctions(self):
|
|
"""Executes two nested TensorFlow functions."""
|
|
|
|
def TimesTwo(x):
|
|
return x * 2
|
|
|
|
def APlus2B(a, b):
|
|
return a + TimesTwo(b)
|
|
|
|
aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32)
|
|
bval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32)
|
|
expected = APlus2B(aval, bval)
|
|
|
|
with self.session():
|
|
|
|
@function.Defun(dtypes.float32, dtypes.float32)
|
|
def Foo(a, b):
|
|
return APlus2B(a, b)
|
|
|
|
a = constant_op.constant(aval, name="a")
|
|
b = constant_op.constant(bval, name="b")
|
|
with self.test_scope():
|
|
call_g = Foo(a, b)
|
|
result = self.evaluate(call_g)
|
|
self.assertAllClose(result, expected, rtol=1e-3)
|
|
|
|
def testFunctionMultipleRetvals(self):
|
|
"""Executes a function with multiple return values."""
|
|
|
|
# This function will run on the XLA device
|
|
def Func(a, b):
|
|
return a + b, a - b
|
|
|
|
aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32)
|
|
bval = np.array([5, 6, 7, 8]).reshape([2, 2]).astype(np.float32)
|
|
expected = Func(aval, bval)
|
|
|
|
with self.session():
|
|
|
|
@function.Defun(dtypes.float32, dtypes.float32)
|
|
def Foo(a, b):
|
|
return Func(a, b)
|
|
|
|
a = constant_op.constant(aval, name="a")
|
|
b = constant_op.constant(bval, name="b")
|
|
with self.test_scope():
|
|
call_f = Foo(a, b)
|
|
result = self.evaluate(call_f)
|
|
self.assertAllClose(result, expected, rtol=1e-3)
|
|
|
|
def testCompileTimeConstantsInDefun(self):
|
|
"""Tests that XLA handles compile-time constants in defuns."""
|
|
with self.session() as sess:
|
|
|
|
@function.Defun(dtypes.float32, dtypes.int32, dtypes.int32)
|
|
def Foo(a, c, d):
|
|
# c and d must be known at compile time
|
|
x = array_ops.slice(a, c, d)
|
|
return x
|
|
|
|
a = array_ops.placeholder(dtypes.float32)
|
|
c = array_ops.placeholder(dtypes.int32, shape=[4])
|
|
d = array_ops.placeholder(dtypes.int32, shape=[4])
|
|
with self.test_scope():
|
|
call_f = Foo(a, c, d)
|
|
result = sess.run(call_f, feed_dict={
|
|
a: np.ones([1, 4, 4, 1]),
|
|
c: [0, 0, 0, 0],
|
|
d: [1, 2, 2, 1]})
|
|
|
|
self.assertAllEqual(np.ones([1, 2, 2, 1]), result)
|
|
|
|
# TODO(b/36139787): Re-enable this test when noinline works again.
|
|
def DISABLED_testFunctionsNoInline(self):
|
|
|
|
@function.Defun(dtypes.float32, noinline=True)
|
|
def TimesTwo(x):
|
|
return x * 2
|
|
|
|
@function.Defun(dtypes.float32, dtypes.float32)
|
|
def APlus2B(a, b):
|
|
return a + TimesTwo(b)
|
|
|
|
aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32)
|
|
bval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32)
|
|
expected = aval + bval * 2
|
|
|
|
with self.session() as sess:
|
|
with self.test_scope():
|
|
a = array_ops.placeholder(dtypes.float32, name="a")
|
|
b = array_ops.placeholder(dtypes.float32, name="b")
|
|
call = APlus2B(a, b)
|
|
result = sess.run(call, {a: aval, b: bval})
|
|
self.assertAllClose(result, expected, rtol=1e-3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|