These are all tests under tensorflow/compiler/tests/ PiperOrigin-RevId: 294429998 Change-Id: I2d6615793adea4f21a8492a356324c333b7948b1
146 lines
5.2 KiB
Python
146 lines
5.2 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for DenseLayer JIT compilation on the CPU and GPU devices."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import test_utils
|
|
from tensorflow.core.protobuf import config_pb2
|
|
from tensorflow.python.compiler.xla import jit
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.layers import layers
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
|
|
jit_scope = jit.experimental_jit_scope
|
|
|
|
def GetRunMetadataLabels(run_metadata):
|
|
"""Returns all labels in run_metadata."""
|
|
labels = []
|
|
for dev_stats in run_metadata.step_stats.dev_stats:
|
|
for node_stats in dev_stats.node_stats:
|
|
labels.append(node_stats.timeline_label)
|
|
return labels
|
|
|
|
|
|
def InLabels(labels, substr):
|
|
"""Returns true iff one of the labels contains substr."""
|
|
return any(substr in x for x in labels)
|
|
|
|
|
|
class DenseLayerTest(test.TestCase):
|
|
|
|
def countXlaOps(self, labels):
|
|
"""Count how many XlaCompile/XlaRun labels are present."""
|
|
xla_compile_count = sum("XlaCompile(" in x for x in labels)
|
|
xla_run_count = sum("XlaRun(" in x for x in labels)
|
|
self.assertEqual(xla_compile_count, xla_run_count)
|
|
return xla_run_count
|
|
|
|
|
|
def testDenseLayerAutoJit(self):
|
|
"""Tests dense layer compilation in auto-jit mode.
|
|
|
|
Dense layer should be compiled into a single XlaCompile/XlaRun op pair in
|
|
auto-jit mode.
|
|
"""
|
|
|
|
os.environ["TF_XLA_FLAGS"] = (
|
|
"--tf_xla_cpu_global_jit " + os.environ.get("TF_XLA_FLAGS", ""))
|
|
config = config_pb2.ConfigProto()
|
|
config.graph_options.optimizer_options.global_jit_level = (
|
|
config_pb2.OptimizerOptions.ON_1)
|
|
|
|
with self.session(config=config) as sess:
|
|
x = array_ops.placeholder(shape=[None, None, 3], dtype=np.float32)
|
|
y = layers.dense(x, 3)
|
|
|
|
self.evaluate(variables.global_variables_initializer())
|
|
run_metadata = config_pb2.RunMetadata()
|
|
test_utils.RunWithWarmup(
|
|
sess,
|
|
y, {x: np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])},
|
|
run_metadata=run_metadata,
|
|
options=config_pb2.RunOptions(
|
|
trace_level=config_pb2.RunOptions.FULL_TRACE))
|
|
|
|
labels = GetRunMetadataLabels(run_metadata)
|
|
self.assertEqual(1, self.countXlaOps(labels))
|
|
self.assertFalse(InLabels(labels, "MatMult"))
|
|
|
|
def testDenseLayerJitScopeDefinedShape(self):
|
|
"""Tests that the dense layer node is properly compiled in jit scope.
|
|
|
|
Dense layer with static shape input tensor should be compiled into a single
|
|
XlaCompile/XlaRun op pair by XLA.
|
|
"""
|
|
|
|
with self.session() as sess:
|
|
x = array_ops.placeholder(shape=[2, 2, 3], dtype=np.float32)
|
|
with jit_scope():
|
|
y = layers.dense(x, 3)
|
|
|
|
self.evaluate(variables.global_variables_initializer())
|
|
run_metadata = config_pb2.RunMetadata()
|
|
test_utils.RunWithWarmup(
|
|
sess,
|
|
y, {x: np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])},
|
|
run_metadata=run_metadata,
|
|
options=config_pb2.RunOptions(
|
|
trace_level=config_pb2.RunOptions.FULL_TRACE))
|
|
|
|
labels = GetRunMetadataLabels(run_metadata)
|
|
self.assertEqual(1, self.countXlaOps(labels))
|
|
# No need to check whether ListDiff is compiled or not because ListDiff op
|
|
# is not used when input tensor shape is fully defined.
|
|
|
|
def testDenseLayerJitScopeUndefinedShape(self):
|
|
"""Tests that the dense layer node is properly compiled in jit scope.
|
|
"""
|
|
|
|
with self.session() as sess:
|
|
x = array_ops.placeholder(shape=[None, None, 3], dtype=np.float32)
|
|
with jit_scope():
|
|
y = layers.dense(x, 3)
|
|
|
|
self.evaluate(variables.global_variables_initializer())
|
|
run_metadata = config_pb2.RunMetadata()
|
|
test_utils.RunWithWarmup(
|
|
sess,
|
|
y, {x: np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])},
|
|
run_metadata=run_metadata,
|
|
options=config_pb2.RunOptions(
|
|
trace_level=config_pb2.RunOptions.FULL_TRACE))
|
|
|
|
labels = GetRunMetadataLabels(run_metadata)
|
|
self.assertEqual(1, self.countXlaOps(labels))
|
|
self.assertFalse(InLabels(labels, "MatMult"))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
os.environ["TF_XLA_FLAGS"] = ("--tf_xla_enable_lazy_compilation=true " +
|
|
os.environ.get("TF_XLA_FLAGS", ""))
|
|
# This test is using Tensorflow sessions which are not compatible with eager
|
|
# mode.
|
|
ops.disable_eager_execution()
|
|
test.main()
|