153 lines
6.0 KiB
Python
153 lines
6.0 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for tensorflow.ops.tf.Cholesky."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import linalg_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class CholeskyOpTest(xla_test.XLATestCase):
|
|
|
|
# Cholesky defined for float64, float32, complex64, complex128
|
|
# (https://www.tensorflow.org/api_docs/python/tf/cholesky)
|
|
@property
|
|
def float_types(self):
|
|
return set(super(CholeskyOpTest, self).float_types).intersection(
|
|
(np.float64, np.float32, np.complex64, np.complex128))
|
|
|
|
def _verifyCholeskyBase(self, sess, placeholder, x, chol, verification, atol):
|
|
chol_np, verification_np = sess.run([chol, verification], {placeholder: x})
|
|
self.assertAllClose(x, verification_np, atol=atol)
|
|
self.assertShapeEqual(x, chol)
|
|
# Check that the cholesky is lower triangular, and has positive diagonal
|
|
# elements.
|
|
if chol_np.shape[-1] > 0:
|
|
chol_reshaped = np.reshape(chol_np, (-1, chol_np.shape[-2],
|
|
chol_np.shape[-1]))
|
|
for chol_matrix in chol_reshaped:
|
|
self.assertAllClose(chol_matrix, np.tril(chol_matrix), atol=atol)
|
|
self.assertTrue((np.diag(chol_matrix) > 0.0).all())
|
|
|
|
def _verifyCholesky(self, x, atol=1e-6):
|
|
# Verify that LL^T == x.
|
|
with self.session() as sess:
|
|
placeholder = array_ops.placeholder(
|
|
dtypes.as_dtype(x.dtype), shape=x.shape)
|
|
with self.test_scope():
|
|
chol = linalg_ops.cholesky(placeholder)
|
|
verification = test_util.matmul_without_tf32(chol, chol, adjoint_b=True)
|
|
self._verifyCholeskyBase(sess, placeholder, x, chol, verification, atol)
|
|
|
|
def testBasic(self):
|
|
data = np.array([[4., -1., 2.], [-1., 6., 0], [2., 0., 5.]])
|
|
for dtype in self.float_types:
|
|
self._verifyCholesky(data.astype(dtype))
|
|
|
|
def testBatch(self):
|
|
for dtype in self.float_types:
|
|
simple_array = np.array(
|
|
[[[1., 0.], [0., 5.]]], dtype=dtype) # shape (1, 2, 2)
|
|
self._verifyCholesky(simple_array)
|
|
self._verifyCholesky(np.vstack((simple_array, simple_array)))
|
|
odd_sized_array = np.array(
|
|
[[[4., -1., 2.], [-1., 6., 0], [2., 0., 5.]]], dtype=dtype)
|
|
self._verifyCholesky(np.vstack((odd_sized_array, odd_sized_array)))
|
|
|
|
# Generate random positive-definite matrices.
|
|
matrices = np.random.rand(10, 5, 5).astype(dtype)
|
|
for i in xrange(10):
|
|
matrices[i] = np.dot(matrices[i].T, matrices[i])
|
|
self._verifyCholesky(matrices, atol=1e-4)
|
|
|
|
@test_util.run_v2_only
|
|
def testNonSquareMatrixV2(self):
|
|
for dtype in self.float_types:
|
|
with self.assertRaises(errors.InvalidArgumentError):
|
|
linalg_ops.cholesky(np.array([[1., 2., 3.], [3., 4., 5.]], dtype=dtype))
|
|
with self.assertRaises(errors.InvalidArgumentError):
|
|
linalg_ops.cholesky(
|
|
np.array(
|
|
[[[1., 2., 3.], [3., 4., 5.]], [[1., 2., 3.], [3., 4., 5.]]],
|
|
dtype=dtype))
|
|
|
|
@test_util.run_v1_only("Different error types")
|
|
def testNonSquareMatrixV1(self):
|
|
for dtype in self.float_types:
|
|
with self.assertRaises(ValueError):
|
|
linalg_ops.cholesky(np.array([[1., 2., 3.], [3., 4., 5.]], dtype=dtype))
|
|
with self.assertRaises(ValueError):
|
|
linalg_ops.cholesky(
|
|
np.array(
|
|
[[[1., 2., 3.], [3., 4., 5.]], [[1., 2., 3.], [3., 4., 5.]]],
|
|
dtype=dtype))
|
|
|
|
@test_util.run_v2_only
|
|
def testWrongDimensionsV2(self):
|
|
for dtype in self.float_types:
|
|
tensor3 = constant_op.constant([1., 2.], dtype=dtype)
|
|
with self.assertRaises(errors.InvalidArgumentError):
|
|
linalg_ops.cholesky(tensor3)
|
|
with self.assertRaises(errors.InvalidArgumentError):
|
|
linalg_ops.cholesky(tensor3)
|
|
|
|
@test_util.run_v1_only("Different error types")
|
|
def testWrongDimensionsV1(self):
|
|
for dtype in self.float_types:
|
|
tensor3 = constant_op.constant([1., 2.], dtype=dtype)
|
|
with self.assertRaises(ValueError):
|
|
linalg_ops.cholesky(tensor3)
|
|
with self.assertRaises(ValueError):
|
|
linalg_ops.cholesky(tensor3)
|
|
|
|
def testLarge2000x2000(self):
|
|
n = 2000
|
|
shape = (n, n)
|
|
data = np.ones(shape).astype(np.float32) / (2.0 * n) + np.diag(
|
|
np.ones(n).astype(np.float32))
|
|
self._verifyCholesky(data, atol=1e-4)
|
|
|
|
def testMatrixConditionNumbers(self):
|
|
for dtype in self.float_types:
|
|
condition_number = 1000
|
|
size = 20
|
|
|
|
# Generate random positive-definite symmetric matrices, and take their
|
|
# Eigendecomposition.
|
|
matrix = np.random.rand(size, size)
|
|
matrix = np.dot(matrix.T, matrix)
|
|
_, w = np.linalg.eigh(matrix)
|
|
|
|
# Build new Eigenvalues exponentially distributed between 1 and
|
|
# 1/condition_number
|
|
v = np.exp(-np.log(condition_number) * np.linspace(0, size, size) / size)
|
|
matrix = np.dot(np.dot(w, np.diag(v)), w.T).astype(dtype)
|
|
self._verifyCholesky(matrix, atol=1e-4)
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|