STT-tensorflow/tensorflow/compiler/aot/tfcompile.bzl
Alexander Grund 956025aa53 Rename exec_tools to tools
Follow up to #43156
Based on
https://github.com/bazelbuild/bazel/issues/12059#issuecomment-725641997
exec_tools might no longer be needed and hence can be replaced by tools.
This fixes various build failures caused by missing environment
variables in environments where they are required, e.g. using custom
compilers.
2020-11-23 15:41:54 -08:00

440 lines
18 KiB
Python

"""Build macro that compiles a TensorFlow graph into a cc_library.
To use from your BUILD file, add the following line to load the macro:
load("//tensorflow/compiler/aot:tfcompile.bzl", "tf_library")
Then call the macro like this:
tf_library(
name = "test_graph_tfmatmul",
config = "test_graph_tfmatmul.config.pbtxt",
cpp_class = "MatMulComp",
graph = ":test_graph_tfmatmul.pb",
)
"""
load(
"//tensorflow:tensorflow.bzl",
"if_android",
"tf_cc_test",
"tf_copts",
)
load("//tensorflow:tensorflow.bzl", "tfcompile_target_cpu")
def tf_library(
name,
graph,
config,
debug_info = None,
freeze_checkpoint = None,
freeze_saver = None,
cpp_class = None,
gen_test = True,
gen_benchmark = True,
visibility = None,
testonly = None,
tfcompile_flags = None,
tfcompile_tool = "//tensorflow/compiler/aot:tfcompile",
include_standard_runtime_deps = True,
enable_xla_hlo_profiling = False,
enable_tracemes = False,
mlir_components = "None",
deps = None,
tags = []):
"""Runs tfcompile to compile a TensorFlow graph into executable code with fast
math enabled on cpu.
Given an invocation of tf_library(name="foo", ...), generates the following
build targets:
foo: A cc_library containing the generated header and
computation.
foo_test: A cc_test with simple tests and benchmarks. Only created if
gen_test=True.
foo_benchmark: A cc_binary that runs a minimal-dependency benchmark,
useful for mobile devices or other platforms that can't
compile the full test libraries. Only created if
gen_benchmark=True.
The output header is called <name>.h.
Args:
name: The name of the build rule.
graph: The TensorFlow GraphDef to compile. If the file ends in '.pbtxt'
it is expected to be in the human-readable proto text format, otherwise
it is expected to be in the proto binary format.
config: File containing tensorflow.tf2xla.Config proto. If the file ends
in '.pbtxt' it is expected to be in the human-readable proto text
format, otherwise it is expected to be in the proto binary format.
freeze_checkpoint: If provided, run freeze_graph with this checkpoint to
convert variables into constants.
freeze_saver: If provided, run freeze_graph with this saver, in SaverDef
binary form, to convert variables into constants.
cpp_class: The name of the generated C++ class, wrapping the generated
function. The syntax of this flag is
[[<optional_namespace>::],...]<class_name>. This mirrors the C++ syntax
for referring to a class, where multiple namespaces may precede the
class name, separated by double-colons. The class will be generated in
the given namespace(s), or if no namespaces are given, within the global
namespace.
gen_test: If True, also generate a cc_test rule that builds a simple
test and benchmark.
gen_benchmark: If True, also generate a binary with a simple benchmark.
Unlike the output of gen_test, this benchmark can be run on android.
visibility: Bazel build visibility.
testonly: Bazel testonly attribute.
tfcompile_flags: Extra flags to pass to tfcompile to control compilation.
tfcompile_tool: The tfcompile binary. A non-default can be passed to
use a tfcompile built with extra dependencies.
include_standard_runtime_deps: If True, the standard list of
kernel/runtime deps is added to deps. If False, deps must contain the
full set of deps needed by the generated library.
enable_xla_hlo_profiling: Enable XLA HLO profiling in the generated
program, and emit metadata that lets us pretty-print the gathered
profile counters.
enable_tracemes: Tell tfcompile to generate calls to
TraceMe::Activity{Start|End} around HLO instructions that can be used by
Xprof to construct profiler timelines.
mlir_components: When the value is "None", no components use MLIR. When
the value is "Bridge", use MLIR to translate GraphDef to HLO.
deps: a list of deps to include on the build rules for the generated
library, added to the standard deps if standard_runtime_deps is True.
tags: tags to apply to subsidiary build rules.
"""
if not cpp_class:
fail("cpp_class must be specified")
tfcompile_graph = graph
if freeze_checkpoint or freeze_saver:
if not freeze_checkpoint:
fail("freeze_checkpoint must be specified when freeze_saver is " +
"specified")
freeze_name = "freeze_" + name
freeze_file = freeze_name + ".pb"
# First run tfcompile to generate the list of out_nodes.
#
# Here and below, we set CUDA_VISIBLE_DEVICES='' to prevent the code we
# launch from using any GPUs which might be present. This is important
# because builds may run concurrently with tests, and tests need to be
# able to assume that they have control of the full GPU.
out_nodes_file = "out_nodes_" + freeze_name
native.genrule(
name = ("gen_" + out_nodes_file),
srcs = [config],
outs = [out_nodes_file],
cmd = ("CUDA_VISIBLE_DEVICES='' " +
"$(location " + tfcompile_tool + ")" +
" --config=$(location " + config + ")" +
" --dump_fetch_nodes > $@"),
tools = [tfcompile_tool],
# Run tfcompile on the build host, rather than forge, since it's
# typically way faster on the local machine.
local = 1,
tags = tags,
)
# Now run freeze_graph to convert variables into constants.
freeze_args = (
" --input_graph=$(location " + graph + ")" +
" --checkpoint_version=1" +
" --input_binary=" + str(not graph.endswith(".pbtxt")) +
" --input_checkpoint=$(location " + freeze_checkpoint + ")" +
" --output_graph=$(location " + freeze_file + ")" +
" --output_node_names=$$(<$(location " + out_nodes_file +
"))"
)
freeze_saver_srcs = []
if freeze_saver:
freeze_args += " --input_saver=$(location " + freeze_saver + ")"
freeze_saver_srcs += [freeze_saver]
native.genrule(
name = freeze_name,
srcs = [
graph,
freeze_checkpoint,
out_nodes_file,
] + freeze_saver_srcs,
outs = [freeze_file],
cmd = (
"CUDA_VISIBLE_DEVICES='' " +
"$(location " +
"//tensorflow/python/tools:freeze_graph)" +
freeze_args
),
tools = ["//tensorflow/python/tools:freeze_graph"],
tags = tags,
)
tfcompile_graph = freeze_file
# Rule that runs tfcompile to produce the header and object file.
header_file = name + ".h"
metadata_object_file = name + "_tfcompile_metadata.o"
function_object_file = name + "_tfcompile_function.o"
# The XLA backends morph kernal name prefix __ that is not in the form of
# __xla_.
ep = ("__xla_" + native.package_name() + "__" + name).replace("/", "_")
if type(tfcompile_flags) == type(""):
flags = tfcompile_flags
else:
flags = " ".join([
"'" + arg.replace("'", "'\\''") + "'"
for arg in (tfcompile_flags or [])
])
# Do this before we append the `select` into `flags`, because doing so
# transforms `flags` into a variable of type `select`, and we can't call
# `find` on such an object.
need_xla_data_proto = flags and flags.find("--gen_program_shape") != -1
target_cpu = tfcompile_target_cpu()
extra_flags = "--target_cpu=" + target_cpu + " " if target_cpu else " "
flags = extra_flags + flags
if enable_xla_hlo_profiling:
profiling_flag = "--xla_hlo_profile"
else:
profiling_flag = ""
if enable_tracemes:
traceme_flag = "--xla_cpu_enable_xprof_traceme=true"
else:
traceme_flag = "--xla_cpu_enable_xprof_traceme=false"
mlir_flag = "--mlir_components=" + mlir_components
srcs = [tfcompile_graph, config]
debug_info_flag = ""
if debug_info:
srcs.append(debug_info)
debug_info_flag = " --debug_info=$(location " + debug_info + ")"
default_fast_math_xla_flags = ("XLA_FLAGS='" +
"--xla_cpu_enable_fast_math=true " +
"--xla_cpu_fast_math_honor_nans=false " +
"--xla_cpu_fast_math_honor_infs=false " +
"--xla_cpu_fast_math_honor_functions=false " +
"--xla_cpu_fast_math_honor_division=false " +
"--xla_cpu_enable_fast_min_max=true " +
"$${XLA_FLAGS:-}' ")
native.genrule(
name = ("gen_" + name),
srcs = srcs,
outs = [
header_file,
metadata_object_file,
function_object_file,
],
cmd = (
default_fast_math_xla_flags +
"CUDA_VISIBLE_DEVICES='' " +
"$(location " + tfcompile_tool + ")" +
" --graph=$(location " + tfcompile_graph + ")" +
debug_info_flag +
" --config=$(location " + config + ")" +
" --entry_point=" + ep +
" --cpp_class=" + cpp_class +
" --target_triple=" + target_llvm_triple() +
" --out_header=$(@D)/" + header_file +
" --out_metadata_object=$(@D)/" + metadata_object_file +
" --out_function_object=$(@D)/" + function_object_file +
" " + flags + " " + profiling_flag + " " + mlir_flag + " " + traceme_flag
),
tools = [tfcompile_tool],
visibility = visibility,
testonly = testonly,
# Run tfcompile on the build host since it's typically faster on the
# local machine.
#
# Note that setting the local=1 attribute on a *test target* causes the
# test infrastructure to skip that test. However this is a genrule, not
# a test target, and runs with --strategy=Genrule=forced_forge, meaning
# the local=1 attribute is ignored, and the genrule is still run.
#
# https://www.bazel.io/versions/master/docs/be/general.html#genrule
local = 1,
tags = tags,
)
# Rule that runs tfcompile to produce the SessionModule proto, useful for
# debugging. TODO(b/64813587): Once the SessionModule proto is
# deterministic, move this into the main rule above.
session_module_pb = name + "_session_module.pb"
native.genrule(
name = (name + "_session_module"),
srcs = srcs,
outs = [
session_module_pb,
],
cmd = (
default_fast_math_xla_flags +
"CUDA_VISIBLE_DEVICES='' " +
"$(location " + tfcompile_tool + ")" +
" --graph=$(location " + tfcompile_graph + ")" +
debug_info_flag +
" --config=$(location " + config + ")" +
" --entry_point=" + ep +
" --cpp_class=" + cpp_class +
" --target_triple=" + target_llvm_triple() +
" --out_session_module=$(@D)/" + session_module_pb +
" " + flags
),
tools = [tfcompile_tool],
visibility = visibility,
testonly = testonly,
local = 1,
tags = tags,
)
# The cc_library rule packaging up the header and object file, and needed
# kernel implementations.
native.cc_library(
name = name,
srcs = [function_object_file, metadata_object_file],
hdrs = [header_file],
visibility = visibility,
testonly = testonly,
deps = [
# These deps are required by all tf_library targets even if
# include_standard_runtime_deps is False. Without them, the
# generated code will fail to compile.
"//tensorflow/compiler/tf2xla:xla_compiled_cpu_function",
"//tensorflow/core:framework_lite",
] + (need_xla_data_proto and [
# If we're generating the program shape, we must depend on the
# proto.
"//tensorflow/compiler/xla:xla_data_proto_cc",
] or []) + (enable_xla_hlo_profiling and [
"//tensorflow/compiler/xla/service:hlo_profile_printer_data_cc",
] or []) + (include_standard_runtime_deps and [
# TODO(cwhipkey): only depend on kernel code that the model actually
# needed.
"//tensorflow/compiler/xla/service/cpu:runtime_conv2d",
"//tensorflow/compiler/xla/service/cpu:runtime_key_value_sort",
"//tensorflow/compiler/xla/service/cpu:runtime_matmul",
"//tensorflow/compiler/xla/service/cpu:runtime_single_threaded_conv2d",
"//tensorflow/compiler/xla/service/cpu:runtime_single_threaded_matmul",
"//third_party/eigen3",
] or []) + (deps or []),
tags = tags,
)
# Variables used for gen_test and gen_benchmark.
cpp_class_split = cpp_class.rsplit("::", 2)
if len(cpp_class_split) == 1:
no_ns_name = cpp_class_split[0]
else:
no_ns_name = cpp_class_split[1]
sed_replace = (
"-e \"s|{{TFCOMPILE_HEADER}}|$(location " + header_file + ")|g\" " +
"-e \"s|{{TFCOMPILE_CPP_CLASS}}|" + cpp_class + "|g\" " +
"-e \"s|{{TFCOMPILE_NAME}}|" + no_ns_name + "|g\" "
)
if gen_test:
test_name = name + "_test"
test_file = test_name + ".cc"
# Rule to rewrite test.cc to produce the test_file.
native.genrule(
name = ("gen_" + test_name),
testonly = 1,
srcs = [
"//tensorflow/compiler/aot:test.cc",
header_file,
],
outs = [test_file],
cmd = (
"sed " + sed_replace +
" $(location //tensorflow/compiler/aot:test.cc) " +
"> $(OUTS)"
),
tags = tags,
)
# The cc_test rule for the generated code. To ensure that this works
# reliably across build configurations, we must use tf_cc_test instead
# of native.cc_test. This is related to how we build
# //tensorflow/core:lib -- see the note in
# tensorflow/core/BUILD for more details.
tf_cc_test(
name = test_name,
srcs = [test_file],
deps = [
":" + name,
"//tensorflow/compiler/aot:tf_library_test_main",
"//tensorflow/compiler/xla:executable_run_options",
"//third_party/eigen3",
"//tensorflow/core:lib",
"//tensorflow/core:test",
],
tags = tags,
)
if gen_benchmark:
benchmark_name = name + "_benchmark"
benchmark_file = benchmark_name + ".cc"
benchmark_main = ("//tensorflow/compiler/aot:" +
"benchmark_main.template")
# Rule to rewrite benchmark.cc to produce the benchmark_file.
native.genrule(
name = ("gen_" + benchmark_name),
srcs = [
benchmark_main,
header_file,
],
testonly = testonly,
outs = [benchmark_file],
cmd = ("sed " + sed_replace +
" $(location " + benchmark_main + ") " +
"> $(OUTS)"),
tags = tags,
)
# The cc_benchmark rule for the generated code. This does not need the
# tf_cc_binary since we (by deliberate design) do not depend on
# //tensorflow/core:lib.
#
# Note: to get smaller size on android for comparison, compile with:
# --copt=-fvisibility=hidden
# --copt=-D_LIBCPP_TYPE_VIS=_LIBCPP_HIDDEN
# --copt=-D_LIBCPP_EXCEPTION_ABI=_LIBCPP_HIDDEN
native.cc_binary(
name = benchmark_name,
srcs = [benchmark_file],
testonly = testonly,
copts = tf_copts(),
linkopts = if_android(["-pie", "-s"]),
deps = [
":" + name,
"//tensorflow/compiler/aot:benchmark",
"//tensorflow/compiler/xla:executable_run_options",
"//third_party/eigen3",
] + if_android([
"//tensorflow/compiler/aot:benchmark_extra_android",
]),
tags = tags,
)
def target_llvm_triple():
"""Returns the target LLVM triple to be used for compiling the target."""
# TODO(toddw): Add target_triple for other targets. For details see:
# http://llvm.org/docs/doxygen/html/Triple_8h_source.html
return select({
"//tensorflow:android_armeabi": "armv5-none-android",
"//tensorflow:android_arm": "armv7-none-android",
"//tensorflow:android_arm64": "aarch64-none-android",
"//tensorflow:android_x86": "i686-none-android",
"//tensorflow:ios": "arm64-none-ios",
"//tensorflow:ios_x86_64": "x86_64-apple-ios",
"//tensorflow:linux_ppc64le": "ppc64le-ibm-linux-gnu",
"//tensorflow:macos": "x86_64-none-darwin",
"//tensorflow:windows": "x86_64-none-windows",
"//tensorflow:linux_s390x": "systemz-none-linux-gnu",
"//conditions:default": "x86_64-pc-linux",
})