STT-tensorflow/tensorflow/lite/kernels/transpose_conv_test.cc
Lev Proleev 915c0b2bbc NNAPI delegate: fix handling of int8 inputs in TransposeConv
PiperOrigin-RevId: 351350783
Change-Id: I7cb5a55dd76b46dc23e856487ee048e50663ac0c
2021-01-12 05:32:41 -08:00

764 lines
29 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stddef.h>
#include <stdint.h>
#include <initializer_list>
#include <map>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "absl/memory/memory.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/string_type.h"
namespace tflite {
namespace ops {
namespace builtin {
TfLiteRegistration* Register_TRANSPOSECONV_REF();
TfLiteRegistration* Register_TRANSPOSECONV_GENERIC_OPT();
} // namespace builtin
} // namespace ops
namespace {
using ::testing::ElementsAreArray;
enum class TestType {
kConst = 0,
kDynamic = 1,
};
template <typename InputType>
class BaseTransposeConvOpModel : public SingleOpModel {
public:
BaseTransposeConvOpModel(TfLiteRegistration* registration,
std::initializer_list<int> output_shape_data,
const TensorData& filter,
std::initializer_list<InputType> filter_data,
const TensorData& input, const TensorData& output,
Padding padding, int stride_w, int stride_h,
TestType test_type, int version = 1) {
// Just to be confusing, transpose_conv has an _input_ named "output_shape"
// that sets the shape of the output tensor of the op :). It must always be
// an int32 1D four element tensor.
if (test_type == TestType::kDynamic) {
output_shape_ = AddInput({TensorType_INT32, {4}});
filter_ = AddInput(filter);
} else {
output_shape_ = AddConstInput(TensorType_INT32, output_shape_data, {4});
filter_ = AddConstInput(filter, filter_data);
}
input_ = AddInput(input);
output_ = AddOutput(output);
SetBuiltinOp(
BuiltinOperator_TRANSPOSE_CONV, BuiltinOptions_TransposeConvOptions,
CreateTransposeConvOptions(builder_, padding, stride_w, stride_h)
.Union());
resolver_ = absl::make_unique<SingleOpResolver>(
BuiltinOperator_TRANSPOSE_CONV, registration, version);
BuildInterpreter(
{GetShape(output_shape_), GetShape(filter_), GetShape(input_)});
if (test_type == TestType::kDynamic) {
PopulateTensor<int32_t>(output_shape_, output_shape_data);
if (!std::is_same<InputType, int16_t>::value &&
!std::is_same<InputType, int8_t>::value) {
PopulateTensor<InputType>(filter_, filter_data);
}
}
}
void SetInput(std::initializer_list<float> data) {
if (std::is_same<InputType, uint8_t>::value) {
QuantizeAndPopulate<uint8_t>(input_, data);
} else if (std::is_same<InputType, int8_t>::value) {
QuantizeAndPopulate<int8_t>(input_, data);
} else if (std::is_same<InputType, int16_t>::value) {
QuantizeAndPopulate<int16_t>(input_, data);
} else {
PopulateTensor(input_, data);
}
}
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
protected:
int output_shape_;
int filter_;
int input_;
int output_;
};
class TransposeConvOpModel : public BaseTransposeConvOpModel<float> {
public:
using BaseTransposeConvOpModel::BaseTransposeConvOpModel;
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
};
const auto kKernelMap = new std::map<string, TfLiteRegistration*>({
{"Reference", ops::builtin::Register_TRANSPOSECONV_REF()},
{"GenericOptimized", ops::builtin::Register_TRANSPOSECONV_GENERIC_OPT()},
});
class TransposeConvOpTest
: public ::testing::TestWithParam<std::tuple<string, TestType>> {
public:
TfLiteRegistration* GetRegistration() {
return kKernelMap->at(std::get<0>(GetParam()));
}
TestType GetTestType() { return std::get<1>(GetParam()); }
};
// Test case:
// output = tf.nn.conv2d_backprop_input(
// tf.constant([ 1, 4, 4, 1 ]),
// tf.constant(np.arange(1, 10), shape=[ 3, 3, 1, 1 ], dtype=tf.float32),
// tf.constant(np.arange(1, 17), shape=[ 1, 4, 4, 1 ], dtype=tf.float32),
// [1, 1, 1, 1 ],
// "SAME")
TEST_P(TransposeConvOpTest, SimpleTest) {
TransposeConvOpModel model(
GetRegistration(), {1, 4, 4, 1}, {TensorType_FLOAT32, {1, 3, 3, 1}},
{1, 2, 3, 4, 5, 6, 7, 8, 9}, {TensorType_FLOAT32, {1, 4, 4, 1}},
{TensorType_FLOAT32, {}}, Padding_SAME, 1, 1, GetTestType());
model.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
model.Invoke();
EXPECT_THAT(model.GetOutput(),
ElementsAreArray({29, 62, 83, 75, 99, 192, 237, 198, 207, 372,
417, 330, 263, 446, 485, 365}));
// GetOutputShape() should always be same as model.SetOutputShape(...);
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 4, 1}));
}
// Test case:
// filter = tf.constant(np.arange(1, 19),
// shape=[ 3, 3, 1, 2 ],
// dtype=tf.float32)
// output = tf.nn.conv2d_backprop_input(
// tf.constant([ 1, 4, 4, 1 ]),
// filter,
// tf.constant(np.arange(1, 33), shape=[ 1, 4, 4, 2 ], dtype=tf.float32),
// [1, 1, 1, 1 ],
// "SAME")
// And filter value is derived by:
// filter = tf.reshape(tf.transpose(filter, perm=[3, 0, 1, 2]), shape=[18, 1])
TEST_P(TransposeConvOpTest, TwoFiltersTest) {
TransposeConvOpModel model(
GetRegistration(), {1, 4, 4, 1}, {TensorType_FLOAT32, {1, 3, 3, 2}},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18},
{TensorType_FLOAT32, {1, 4, 4, 2}}, {TensorType_FLOAT32, {}},
Padding_SAME, 1, 1, GetTestType());
model.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32});
model.Invoke();
EXPECT_THAT(model.GetOutput(),
ElementsAreArray({184, 412, 568, 528, 678, 1347, 1689, 1434, 1494,
2715, 3057, 2442, 1968, 3352, 3652, 2760}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 4, 1}));
}
// Test case:
// filter = tf.constant(np.arange(1, 19),
// shape=[ 3, 3, 1, 2 ],
// dtype=tf.float32)
// output = tf.nn.conv2d_backprop_input(
// tf.constant([ 1, 6, 6, 1 ]),
// filter,
// tf.constant(np.arange(1, 33), shape=[ 1, 4, 4, 2 ], dtype=tf.float32),
// [1, 1, 1, 1 ],
// "VALID")
// And filter value is derived by:
// filter = tf.reshape(tf.transpose(filter, perm=[3, 0, 1, 2]), shape=[1, 18])
TEST_P(TransposeConvOpTest, PaddingValidTest) {
TransposeConvOpModel model(
GetRegistration(), {1, 6, 6, 1}, {TensorType_FLOAT32, {1, 3, 3, 2}},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18},
{TensorType_FLOAT32, {1, 4, 4, 2}}, {TensorType_FLOAT32, {}},
Padding_VALID, 1, 1, GetTestType());
model.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32});
model.Invoke();
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({5, 22, 59, 101, 114, 83, 52, 184, 412,
568, 528, 344, 237, 678, 1347, 1689, 1434, 879,
597, 1494, 2715, 3057, 2442, 1431, 856, 1968, 3352,
3652, 2760, 1548, 689, 1534, 2543, 2729, 2010, 1103}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 6, 6, 1}));
}
// Test case:
// filter = tf.constant(np.arange(1, 10),
// shape=[ 3, 3, 1, 1 ],
// dtype=tf.float32)
// output = tf.nn.conv2d_backprop_input(
// tf.constant([ 1, 5, 5, 1 ]),
// filter,
// tf.constant(np.arange(1, 5), shape=[ 1, 2, 2, 1 ], dtype=tf.float32),
// [1, 2, 2, 1 ],
// "VALID")
TEST_P(TransposeConvOpTest, StrideValidTest) {
TransposeConvOpModel model(
GetRegistration(), {1, 5, 5, 1}, {TensorType_FLOAT32, {1, 3, 3, 1}},
{1, 2, 3, 4, 5, 6, 7, 8, 9}, {TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {}}, Padding_VALID, 2, 2, GetTestType());
model.SetInput({1, 2, 3, 4});
model.Invoke();
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({1, 2, 5, 4, 6, 4, 5, 14, 10, 12, 10, 14, 36,
24, 30, 12, 15, 34, 20, 24, 21, 24, 55, 32, 36}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 5, 5, 1}));
}
// Test case:
// filter = tf.constant(np.arange(1, 19),
// shape=[ 3, 3, 2, 1 ],
// dtype=tf.float32)
// output = tf.nn.conv2d_backprop_input(
// tf.constant([ 1, 5, 5, 2 ]),
// filter,
// tf.constant(np.arange(1, 5), shape=[ 1, 2, 2, 1 ], dtype=tf.float32),
// [1, 2, 2, 1 ],
// "VALID")
TEST_P(TransposeConvOpTest, MultiChannelTest) {
TransposeConvOpModel model(
GetRegistration(), {1, 5, 5, 2}, {TensorType_FLOAT32, {2, 3, 3, 1}},
{1, 3, 5, 7, 9, 11, 13, 15, 17, 2, 4, 6, 8, 10, 12, 14, 16, 18},
{TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}},
Padding_VALID, 2, 2, GetTestType());
model.SetInput({1, 2, 3, 4});
model.Invoke();
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({1, 2, 3, 4, 7, 10, 6, 8, 10, 12, 7, 8, 9,
10, 25, 28, 18, 20, 22, 24, 16, 20, 24, 28, 62, 72,
42, 48, 54, 60, 21, 24, 27, 30, 61, 68, 36, 40, 44,
48, 39, 42, 45, 48, 103, 110, 60, 64, 68, 72}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 5, 5, 2}));
}
// Test case:
// filter = tf.constant(np.random.randint(1, 10, size=9),
// shape=[ 3, 3, 1, 1 ],
// dtype=tf.float32)
// output = tf.nn.conv2d_backprop_input(
// tf.constant([ 1, 3, 4, 1 ]),
// filter,
// tf.constant([323, 521], shape=[ 1, 1, 2, 1], dtype=tf.float32),
// [1, 3, 3, 1 ],
// "SAME")
// And filter value is derived by:
// filter = tf.reshape(tf.transpose(filter, perm=[3, 0, 1, 2]), shape=[-1])
TEST_P(TransposeConvOpTest, AccuracyTest) {
TransposeConvOpModel model(
GetRegistration(), {1, 3, 4, 1}, {TensorType_FLOAT32, {1, 3, 3, 1}},
{9, 5, 6, 9, 8, 5, 3, 1, 4}, {TensorType_FLOAT32, {1, 1, 2, 1}},
{TensorType_FLOAT32, {}}, Padding_SAME, 3, 3, GetTestType());
model.SetInput({323, 521});
model.Invoke();
EXPECT_THAT(model.GetOutput(),
ElementsAreArray(
ArrayFloatNear({1615., 1938., 4689., 2605., 2584., 1615.,
4689., 4168., 323., 1292., 1563., 521.})));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 3, 4, 1}));
}
class QuantizedTransposeConvOpModel : public BaseTransposeConvOpModel<uint8_t> {
public:
using BaseTransposeConvOpModel::BaseTransposeConvOpModel;
std::vector<float> GetDequantizedOutput() {
return Dequantize<uint8_t>(ExtractVector<uint8_t>(output_),
GetScale(output_), GetZeroPoint(output_));
}
};
TEST_P(TransposeConvOpTest, SimpleTestQuantized) {
// Float would be {1, 2, 3, 4, 5, 6, 7, 8, 9}
std::initializer_list<uint8_t> filter_data = {129, 131, 133, 135, 137,
139, 141, 143, 145};
QuantizedTransposeConvOpModel model(
GetRegistration(), {1, 4, 4, 1},
{TensorType_UINT8, {1, 3, 3, 1}, -63.5, 64}, filter_data,
{TensorType_UINT8, {1, 4, 4, 1}, -63.5, 64},
{TensorType_UINT8, {}, -508, 512}, Padding_SAME, 1, 1, GetTestType());
model.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
model.Invoke();
EXPECT_THAT(
model.GetDequantizedOutput(),
ElementsAreArray(ArrayFloatNear({28, 64, 84, 76, 100, 192, 236, 200, 208,
372, 416, 332, 264, 448, 484, 364},
1e-5)));
// GetOutputShape() should always be same as model.SetOutputShape(...);
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 4, 1}));
}
TEST_P(TransposeConvOpTest, TwoFiltersTestQuantized) {
// Float would be {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
// 18}
std::initializer_list<uint8_t> filter_data = {129, 131, 133, 135, 137, 139,
141, 143, 145, 147, 149, 151,
153, 155, 157, 159, 161, 163};
QuantizedTransposeConvOpModel model(
GetRegistration(), {1, 4, 4, 1},
{TensorType_UINT8, {1, 3, 3, 2}, -63.5, 64}, filter_data,
{TensorType_UINT8, {1, 4, 4, 2}, -63.5, 64},
{TensorType_UINT8, {}, -4064, 4096}, Padding_SAME, 1, 1, GetTestType());
model.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32});
model.Invoke();
EXPECT_THAT(model.GetDequantizedOutput(),
ElementsAreArray(ArrayFloatNear(
{192, 416, 576, 544, 672, 1344, 1696, 1440, 1504, 2720, 3072,
2432, 1984, 3360, 3648, 2752},
1e-5)));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 4, 1}));
}
TEST_P(TransposeConvOpTest, PaddingValidTestQuantized) {
// Float would be {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
// 18}
std::initializer_list<uint8_t> filter_data = {129, 131, 133, 135, 137, 139,
141, 143, 145, 147, 149, 151,
153, 155, 157, 159, 161, 163};
QuantizedTransposeConvOpModel model(
GetRegistration(), {1, 6, 6, 1},
{TensorType_UINT8, {1, 3, 3, 2}, -63.5, 64}, filter_data,
{TensorType_UINT8, {1, 4, 4, 2}, -63.5, 64},
{TensorType_UINT8, {}, -4064, 4096}, Padding_VALID, 1, 1, GetTestType());
model.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32});
model.Invoke();
EXPECT_THAT(model.GetDequantizedOutput(),
ElementsAreArray(ArrayFloatNear(
{0, 32, 64, 96, 128, 96, 64, 192, 416,
576, 544, 352, 224, 672, 1344, 1696, 1440, 864,
608, 1504, 2720, 3072, 2432, 1440, 864, 1984, 3360,
3648, 2752, 1536, 704, 1536, 2528, 2720, 2016, 1088},
1e-5)));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 6, 6, 1}));
}
class PerChannelQuantizedTransposeConvOpModel
: public BaseTransposeConvOpModel<int8_t> {
public:
using BaseTransposeConvOpModel::BaseTransposeConvOpModel;
std::vector<float> GetDequantizedOutput() {
return Dequantize<int8_t>(ExtractVector<int8_t>(output_), GetScale(output_),
GetZeroPoint(output_));
}
void SetFilter(const std::initializer_list<float>& data) {
PerChannelSymmetricQuantizeAndPopulate(filter_, data);
}
};
TEST_P(TransposeConvOpTest, SimpleTestQuantizedPerChannelSingleChannel) {
const std::initializer_list<float> filter_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
const std::initializer_list<int8_t> const_filter_data = {14, 28, 42, 56, 71,
85, 99, 113, 127};
PerChannelQuantizedTransposeConvOpModel model(
GetRegistration(), {1, 4, 4, 1},
{TensorType_INT8, {1, 3, 3, 1}, 0, 0, 0, 0, true, {9.0 / 127}, {0}, 0},
const_filter_data,
{TensorType_INT8, {1, 4, 4, 1}, 0, 0, 16.0 / 255, -128},
{TensorType_INT8, {}, 0, 0, 2, -128}, Padding_SAME, 1, 1, GetTestType(),
/* version */ 2);
model.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
if (GetTestType() == TestType::kDynamic) {
model.SetFilter(filter_data);
}
model.Invoke();
EXPECT_THAT(
model.GetDequantizedOutput(),
ElementsAreArray(ArrayFloatNear({28, 62, 82, 76, 98, 192, 238, 198, 206,
372, 416, 330, 262, 446, 486, 366},
1e-5)));
// GetOutputShape() should always be same as model.SetOutputShape(...);
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 4, 1}));
}
// Test data copied from the float multi-channel test above.
TEST_P(TransposeConvOpTest, TestQuantizedPerChannelMultiChannel) {
const std::initializer_list<float> filter_data = {
1, 3, 5, 7, 9, 11, 13, 15, 17, 2, 4, 6, 8, 10, 12, 14, 16, 18};
const std::initializer_list<int8_t> const_filter_data = {
7, 22, 37, 52, 67, 82, 97, 112, 127,
14, 28, 42, 56, 71, 85, 99, 113, 127};
PerChannelQuantizedTransposeConvOpModel model(
GetRegistration(), {1, 5, 5, 2},
{TensorType_INT8,
{2, 3, 3, 1},
0,
0,
0,
0,
true,
{17.0 / 127, 18.0 / 127},
{0, 0},
0},
const_filter_data, {TensorType_INT8, {1, 2, 2, 1}, 0, 0, 4.0 / 255, -128},
{TensorType_INT8, {}, 0, 0, 1, -128}, Padding_VALID, 2, 2, GetTestType(),
/* version */ 2);
model.SetInput({1, 2, 3, 4});
if (GetTestType() == TestType::kDynamic) {
model.SetFilter(filter_data);
}
model.Invoke();
EXPECT_THAT(
model.GetDequantizedOutput(),
ElementsAreArray(ArrayFloatNear(
{1, 2, 3, 4, 7, 10, 6, 8, 10, 12, 7, 8, 9, 10, 25, 28, 18,
20, 22, 24, 16, 20, 24, 28, 62, 72, 42, 48, 54, 60, 21, 24, 27, 30,
61, 68, 36, 40, 44, 48, 39, 42, 45, 48, 103, 110, 60, 64, 68, 72},
1e-5)));
// GetOutputShape() should always be same as model.SetOutputShape(...);
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 5, 5, 2}));
}
class PerChannelQuantizedTransposeConvOpModel16x8
: public BaseTransposeConvOpModel<int16_t> {
public:
using BaseTransposeConvOpModel::BaseTransposeConvOpModel;
std::vector<float> GetDequantizedOutput() {
return Dequantize<int16_t>(ExtractVector<int16_t>(output_),
GetScale(output_), GetZeroPoint(output_));
}
void SetFilter(const std::initializer_list<float>& data) {
PerChannelSymmetricQuantizeAndPopulate(filter_, data);
}
};
TEST_P(TransposeConvOpTest, SimpleTestQuantizedPerChannel16x8) {
const std::initializer_list<float> filter_data = {
// [2 * 2 * 2 * 2] as [output_channel, y, x, input_channel]
1, 2, // out channel = 0, y = 0, x = 0
3, 4, // out channel = 0, y = 0, x = 1
3, 4, // out channel = 0, y = 1, x = 0
5, 6, // out channel = 0, y = 1, x = 1
7, 8, // out channel = 1, y = 0, x = 0
5, 6, // out channel = 1, y = 0, x = 1
3, 4, // out channel = 1, y = 1, x = 0
1, 2, // out channel = 1, y = 1, x = 1
};
PerChannelQuantizedTransposeConvOpModel16x8 model(
GetRegistration(),
/*output_shape_data=*/{1, 2, 3, 2},
/*filter=*/
{TensorType_INT8,
/*shape=*/{2, 2, 2, 2},
/*min=*/-64, /*max=*/64,
/*scale=*/0, /*zero_point=*/0,
/*per_channel_quantization=*/true,
/*per_channel_quantization_scales=*/{7.0 / 127, 8.0 / 127},
/*per_channel_quantization_offsets=*/{0, 0},
/*channel_index=*/0},
/*filter_data=*/{},
/*input=*/
{TensorType_INT16,
/*shape=*/{1, 2, 3, 2},
/*min=*/0, /*max=*/0,
/*scale=*/4.0 / 127,
/*zero_point=*/0},
/*output=*/
{TensorType_INT16,
/*shape=*/{},
/*min=*/0, /*max=*/0,
/*scale=*/1.0,
/*zero_point=*/0},
/*padding=*/Padding_SAME,
/*stride_w=*/1, /*stride_h=*/1, GetTestType());
model.SetInput({
// [1 * 2 * 3 * 2] as [batch, y, x, input_channel]
3, 2, // batch = 0, y = 0, x = 0
1, -1, // batch = 0, y = 0, x = 1
-2, -3, // batch = 0, y = 0, x = 2
4, 3, // batch = 0, y = 1, x = 0
2, -2, // batch = 0, y = 1, x = 1
-3, -4, // batch = 0, y = 1, x = 2
});
model.SetFilter(filter_data);
model.Invoke();
EXPECT_THAT(model.GetDequantizedOutput(),
ElementsAreArray(ArrayFloatNear(
{7, 37, 16, 26, -9, -39, 27, 69, 48, 42, -32, -74}, 1e-5)));
// GetOutputShape() should always be same as model.SetOutputShape(...);
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 3, 2}));
}
template <typename InputType>
class BaseTransposeConvBiasOpModel : public SingleOpModel {
public:
BaseTransposeConvBiasOpModel(TfLiteRegistration* registration,
std::initializer_list<int> output_shape_data,
const TensorData& filter,
std::initializer_list<InputType> filter_data,
const TensorData& input,
const TensorData& output, Padding padding,
int stride_w, int stride_h, TestType test_type,
int version = 3) {
if (test_type == TestType::kDynamic) {
output_shape_ = AddInput({TensorType_INT32, {4}});
filter_ = AddInput(filter);
} else {
output_shape_ = AddConstInput(TensorType_INT32, output_shape_data, {4});
filter_ = AddConstInput(filter, filter_data);
}
input_ = AddInput(input);
int bias_size = GetShape(filter_)[0];
if (input.type == TensorType_FLOAT32) {
bias_ = AddInput({TensorType_FLOAT32, {bias_size}});
} else if (input.type == TensorType_INT8) {
// per channel quantization.
std::vector<float> bias_scale(
filter.per_channel_quantization_scales.size());
std::vector<int64_t> bias_zero_points(
filter.per_channel_quantization_scales.size());
for (size_t i = 0; i < filter.per_channel_quantization_scales.size();
++i) {
bias_scale[i] = input.scale * filter.per_channel_quantization_scales[i];
bias_zero_points[i] = 0;
}
TensorData bias{TensorType_INT32,
{bias_size},
/*min=*/0,
/*max=*/0,
/*scale=*/0,
/*zero_point=*/0,
true,
/*per_channel_quantization_scales=*/bias_scale,
/*per_channel_quantization_offsets=*/bias_zero_points,
/*channel_index==*/0};
bias_ = AddInput(bias);
} else {
// per tensor quantization.
auto bias_scale = GetScale(input_) * GetScale(filter_);
TensorData bias{TensorType_INT32, {bias_size}, 0, 0, bias_scale};
bias_ = AddInput(bias);
}
output_ = AddOutput(output);
SetBuiltinOp(
BuiltinOperator_TRANSPOSE_CONV, BuiltinOptions_TransposeConvOptions,
CreateTransposeConvOptions(builder_, padding, stride_w, stride_h)
.Union());
resolver_ = absl::make_unique<SingleOpResolver>(
BuiltinOperator_TRANSPOSE_CONV, registration, version);
BuildInterpreter({GetShape(output_shape_), GetShape(filter_),
GetShape(input_), GetShape(bias_)});
if (test_type == TestType::kDynamic) {
PopulateTensor<int32_t>(output_shape_, output_shape_data);
PopulateTensor<InputType>(filter_, filter_data);
}
}
void SetInput(std::initializer_list<float> data) {
if (std::is_same<InputType, uint8_t>::value) {
QuantizeAndPopulate<uint8_t>(input_, data);
} else if (std::is_same<InputType, int8_t>::value) {
QuantizeAndPopulate<int8_t>(input_, data);
} else {
PopulateTensor(input_, data);
}
}
void SetBias(std::initializer_list<float> bias) {
if (std::is_same<InputType, uint8_t>::value) {
QuantizeAndPopulate<int32_t>(bias_, bias);
} else if (std::is_same<InputType, int8_t>::value) {
PerChannelQuantizeBias(bias_, bias);
} else {
PopulateTensor(bias_, bias);
}
}
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
protected:
int output_shape_;
int filter_;
int input_;
int bias_;
int output_;
};
class TransposeConvOpBiasModel : public BaseTransposeConvBiasOpModel<float> {
public:
using BaseTransposeConvBiasOpModel::BaseTransposeConvBiasOpModel;
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
};
// Test case:
// input_data = np.arange(1, 5).reshape(1,2,2,1).astype(np.float32)
// filter_data = np.arange(1, 19).reshape(3,3,2,1).astype(np.float32)
// bias_data = np.array([3,4])
// input = tf.keras.layers.Input(shape=(2, 2, 1))
// output = tf.keras.layers.Convolution2DTranspose(filters=2,
// kernel_size=[3, 3],
// strides=[2, 2],
// padding="valid")(input)
// model = tf.keras.models.Model(input, output)
// model.layers[1].set_weights([filter_data, bias_data])
// output = model.predict(input_data)
TEST_P(TransposeConvOpTest, MultiChannelBiasTest) {
TransposeConvOpBiasModel model(
GetRegistration(), /*output_shape=*/{1, 5, 5, 2},
/*filter=*/{TensorType_FLOAT32, {2, 3, 3, 1}},
/*filter_data=*/
{1, 3, 5, 7, 9, 11, 13, 15, 17, 2, 4, 6, 8, 10, 12, 14, 16, 18},
/*input=*/{TensorType_FLOAT32, {1, 2, 2, 1}},
/*output=*/{TensorType_FLOAT32, {}}, Padding_VALID,
/*stride_w=*/2, /*stride_h=*/2, GetTestType(), /* version */ 3);
model.SetInput({1, 2, 3, 4});
model.SetBias({3, 4});
model.Invoke();
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({4, 6, 6, 8, 10, 14, 9, 12, 13, 16, 10, 12, 12,
14, 28, 32, 21, 24, 25, 28, 19, 24, 27, 32, 65, 76,
45, 52, 57, 64, 24, 28, 30, 34, 64, 72, 39, 44, 47,
52, 42, 46, 48, 52, 106, 114, 63, 68, 71, 76}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 5, 5, 2}));
}
class QuantizedTransposeConvBiasOpModel
: public BaseTransposeConvBiasOpModel<uint8_t> {
public:
using BaseTransposeConvBiasOpModel::BaseTransposeConvBiasOpModel;
std::vector<float> GetDequantizedOutput() {
return Dequantize<uint8_t>(ExtractVector<uint8_t>(output_),
GetScale(output_), GetZeroPoint(output_));
}
};
TEST_P(TransposeConvOpTest, SimpleBiasTestQuantized) {
// Float would be {1, 2, 3, 4, 5, 6, 7, 8, 9}
std::initializer_list<uint8_t> filter_data = {129, 131, 133, 135, 137,
139, 141, 143, 145};
QuantizedTransposeConvBiasOpModel model(
GetRegistration(), {1, 4, 4, 1},
{TensorType_UINT8, {1, 3, 3, 1}, -63.5, 64}, filter_data,
{TensorType_UINT8, {1, 4, 4, 1}, -63.5, 64},
{TensorType_UINT8, {}, -508, 512}, Padding_SAME, 1, 1, GetTestType(),
/* version */ 3);
model.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
model.SetBias({1});
model.Invoke();
EXPECT_THAT(
model.GetDequantizedOutput(),
ElementsAreArray(ArrayFloatNear({32, 64, 84, 76, 100, 192, 240, 200, 208,
372, 420, 332, 264, 448, 488, 368},
1e-5)));
// GetOutputShape() should always be same as model.SetOutputShape(...);
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 4, 1}));
}
class PerChannelQuantizedTransposeConvBiasOpModel
: public BaseTransposeConvBiasOpModel<int8_t> {
public:
using BaseTransposeConvBiasOpModel::BaseTransposeConvBiasOpModel;
std::vector<float> GetDequantizedOutput() {
return Dequantize<int8_t>(ExtractVector<int8_t>(output_), GetScale(output_),
GetZeroPoint(output_));
}
void SetInput(const std::initializer_list<float>& data) {
QuantizeAndPopulate<int8_t>(input_, data);
}
void SetFilter(const std::initializer_list<float>& data) {
PerChannelSymmetricQuantizeAndPopulate(filter_, data);
}
};
TEST_P(TransposeConvOpTest, SimpleBiasTestQuantizedPerChannelSingleChannel) {
const std::initializer_list<float> filter_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
PerChannelQuantizedTransposeConvBiasOpModel model(
GetRegistration(), {1, 4, 4, 1},
{TensorType_INT8, {1, 3, 3, 1}, 0, 0, 0, 0, true, {9.0 / 127}, {0}, 0},
{}, {TensorType_INT8, {1, 4, 4, 1}, 0, 0, 16.0 / 255, -128},
{TensorType_INT8, {}, 0, 0, 2, -128}, Padding_SAME, 1, 1, GetTestType(),
/* version */ 3);
model.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
model.SetFilter(filter_data);
model.SetBias({1});
model.Invoke();
EXPECT_THAT(
model.GetDequantizedOutput(),
ElementsAreArray(ArrayFloatNear({30, 62, 84, 76, 100, 194, 238, 200, 208,
372, 418, 330, 264, 446, 486, 366},
1e-5)));
// GetOutputShape() should always be same as model.SetOutputShape(...);
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 4, 1}));
}
INSTANTIATE_TEST_SUITE_P(
TransposeConvOpTest, TransposeConvOpTest,
::testing::Combine(
::testing::ValuesIn(SingleOpTest::GetKernelTags(*kKernelMap)),
::testing::Values(TestType::kConst, TestType::kDynamic)));
} // namespace
} // namespace tflite