STT-tensorflow/tensorflow/lite/kernels/slice_test.cc
Jared Duke 7f20831cf7 [tf.lite] Add 5D support to slice
PiperOrigin-RevId: 349439300
Change-Id: I74c91acd4d230d30f6518469949aaa94dcd9045e
2020-12-29 10:22:52 -08:00

291 lines
12 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <initializer_list>
#include <string>
#include <vector>
#include <gtest/gtest.h>
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/string_type.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
enum class TestType {
kConst = 0,
kDynamic = 1,
};
template <typename input_type, typename index_type>
class SliceOpModel : public SingleOpModel {
public:
SliceOpModel(std::initializer_list<int> input_shape,
std::initializer_list<int> begin_shape,
std::initializer_list<index_type> begin_data,
std::initializer_list<int> size_shape,
std::initializer_list<index_type> size_data,
TensorType tensor_index_type, TensorType tensor_input_type,
TestType input_tensor_types) {
input_ = AddInput(tensor_input_type);
if (input_tensor_types == TestType::kDynamic) {
begin_ = AddInput(tensor_index_type);
size_ = AddInput(tensor_index_type);
} else {
begin_ =
AddConstInput(GetTensorType<index_type>(), begin_data, begin_shape);
size_ = AddConstInput(GetTensorType<index_type>(), size_data, size_shape);
}
output_ = AddOutput(tensor_input_type);
SetBuiltinOp(BuiltinOperator_SLICE, BuiltinOptions_SliceOptions,
CreateSliceOptions(builder_).Union());
BuildInterpreter({input_shape, begin_shape, size_shape});
if (input_tensor_types == TestType::kDynamic) {
PopulateTensor<index_type>(begin_, begin_data);
PopulateTensor<index_type>(size_, size_data);
}
}
void SetInput(std::initializer_list<input_type> data) {
PopulateTensor<input_type>(input_, data);
}
void SetStringInput(std::vector<string> data) {
PopulateStringTensor(input_, data);
}
std::vector<input_type> GetOutput() {
return ExtractVector<input_type>(output_);
}
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
private:
int input_;
int begin_;
int size_;
int output_;
};
class SliceOpTest : public ::testing::TestWithParam<TestType> {};
TEST_P(SliceOpTest, In1D) {
SliceOpModel<float, int32_t> m({4}, {1}, {1}, {1}, {2}, TensorType_INT32,
TensorType_FLOAT32, GetParam());
m.SetInput({1, 2, 3, 4});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({2, 3}));
}
TEST_P(SliceOpTest, In2D) {
SliceOpModel<float, int32_t> m({2, 3}, {2}, {1, 0}, {2}, {1, 2},
TensorType_INT32, TensorType_FLOAT32,
GetParam());
m.SetInput({1, 2, 3, 4, 5, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({4, 5}));
}
TEST_P(SliceOpTest, In3D) {
SliceOpModel<float, int32_t> m({2, 3, 2}, {3}, {0, 0, 0}, {3}, {2, 3, 2},
TensorType_INT32, TensorType_FLOAT32,
GetParam());
m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3, 2}));
EXPECT_THAT(m.GetOutput(),
ElementsAreArray({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}));
}
TEST_P(SliceOpTest, In5D) {
SliceOpModel<float, int32_t> m({5, 1, 1, 1, 1}, {5}, {1, 0, 0, 0, 0}, {5},
{3, 1, 1, 1, 1}, TensorType_INT32,
TensorType_FLOAT32, GetParam());
m.SetInput({1, 2, 3, 4, 5});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 1, 1, 1, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({2, 3, 4}));
}
TEST_P(SliceOpTest, InputFloat) {
SliceOpModel<float, int32_t> m({4, 1, 1, 1}, {4}, {1, 0, 0, 0}, {4},
{3, 1, 1, 1}, TensorType_INT32,
TensorType_FLOAT32, GetParam());
m.SetInput({1, 2, 3, 4});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 1, 1, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({2, 3, 4}));
}
TEST_P(SliceOpTest, IndexInt64) {
SliceOpModel<float, int64_t> m({4, 1, 1, 1}, {4}, {1, 0, 0, 0}, {4},
{3, 1, 1, 1}, TensorType_INT64,
TensorType_FLOAT32, GetParam());
m.SetInput({1, 2, 3, 4});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 1, 1, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({2, 3, 4}));
}
// See these test cases under:
// https://www.tensorflow.org/versions/master/api_docs/python/tf/slice
TEST_P(SliceOpTest, InputInteger1) {
SliceOpModel<int32_t, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 0, 0}, {4},
{1, 1, 3, 1}, TensorType_INT32,
TensorType_INT32, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 3, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3}));
}
TEST_P(SliceOpTest, InputInteger2) {
SliceOpModel<int32_t, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 0, 0}, {4},
{1, 2, 3, 1}, TensorType_INT32,
TensorType_INT32, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 3, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 4, 4, 4}));
}
TEST_P(SliceOpTest, InputInteger3) {
SliceOpModel<int32_t, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 0, 0}, {4},
{2, 1, 3, 1}, TensorType_INT32,
TensorType_INT32, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 1, 3, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 5, 5, 5}));
}
TEST_P(SliceOpTest, SizeMinus1) {
SliceOpModel<int32_t, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 0, 0}, {4},
{2, 1, -1, 1}, TensorType_INT32,
TensorType_INT32, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 1, 3, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 5, 5, 5}));
}
TEST_P(SliceOpTest, BeginNonZeroSizeMinus1Axis1) {
SliceOpModel<int32_t, int32_t> m({3, 3, 2, 1}, {4}, {1, 1, 0, 0}, {4},
{2, -1, 1, 1}, TensorType_INT32,
TensorType_INT32, GetParam());
m.SetInput({1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 1, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({5, 6, 8, 9}));
}
TEST_P(SliceOpTest, BeginNonZeroSizeMinus1Axis2) {
SliceOpModel<int32_t, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 1, 0}, {4},
{2, 1, -1, 1}, TensorType_INT32,
TensorType_INT32, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 1, 2, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 5, 5}));
}
TEST_P(SliceOpTest, BeginNonZeroSizeMinus1Axis3) {
SliceOpModel<int32_t, int32_t> m({3, 1, 2, 3}, {4}, {1, 0, 0, 1}, {4},
{2, 1, 1, -1}, TensorType_INT32,
TensorType_INT32, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 1, 1, 2}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 5, 5}));
}
TEST_P(SliceOpTest, SliceUint8) {
SliceOpModel<uint8_t, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 0, 0}, {4},
{2, 1, -1, 1}, TensorType_INT32,
TensorType_UINT8, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 1, 3, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 5, 5, 5}));
}
TEST_P(SliceOpTest, SliceInt8) {
SliceOpModel<int8_t, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 0, 0}, {4},
{2, 1, -1, 1}, TensorType_INT32,
TensorType_INT8, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 1, 3, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 5, 5, 5}));
}
TEST_P(SliceOpTest, SliceInt16) {
SliceOpModel<int16_t, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 0, 0}, {4},
{2, 1, -1, 1}, TensorType_INT32,
TensorType_INT16, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 1, 3, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 5, 5, 5}));
}
TEST_P(SliceOpTest, SliceString) {
SliceOpModel<string, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 0, 0}, {4},
{2, 1, -1, 1}, TensorType_INT32,
TensorType_STRING, GetParam());
m.SetStringInput({"0,0,0,0", "0,0,1,0", "0,0,2,0", //
"0,1,0,0", "0,1,1,0", "0,1,2,0", //
"1,0,0,0", "1,0,1,0", "1,0,2,0", //
"1,1,0,0", "1,1,1,0", "1,1,2,0", //
"2,0,0,0", "2,0,1,0", "2,0,2,0", //
"2,1,0,0", "2,1,1,0", "2,1,2,0"});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 1, 3, 1}));
EXPECT_THAT(m.GetOutput(),
ElementsAreArray({"1,0,0,0", "1,0,1,0", "1,0,2,0", //
"2,0,0,0", "2,0,1,0", "2,0,2,0"}));
}
TEST_P(SliceOpTest, SliceInt64) {
SliceOpModel<int64_t, int32_t> m({3, 2, 3, 1}, {4}, {1, 0, 0, 0}, {4},
{2, 1, -1, 1}, TensorType_INT32,
TensorType_INT64, GetParam());
m.SetInput({1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 1, 3, 1}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 5, 5, 5}));
}
TEST_P(SliceOpTest, SliceBool) {
SliceOpModel<bool, int32_t> m({2, 3}, {2}, {1, 0}, {2}, {-1, 2},
TensorType_INT32, TensorType_BOOL, GetParam());
m.SetInput({true, false, true, false, true, true});
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2}));
EXPECT_THAT(m.GetOutput(), ElementsAreArray({false, true}));
}
INSTANTIATE_TEST_SUITE_P(SliceOpTest, SliceOpTest,
::testing::Values(TestType::kConst,
TestType::kDynamic));
} // namespace
} // namespace tflite