STT-tensorflow/tensorflow/lite/kernels/select_test.cc
Thai Nguyen 64a509a9d2 Support scalar condition in Select op
PiperOrigin-RevId: 319477642
Change-Id: Ia9866838388d72cb1637cf0f29ae92ec9e486296
2020-07-02 23:59:21 -07:00

361 lines
13 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <initializer_list>
#include <vector>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class BaseSelectOpModel : public SingleOpModel {
public:
BaseSelectOpModel(std::initializer_list<int> input1_shape,
std::initializer_list<int> input2_shape,
std::initializer_list<int> input3_shape,
TensorType input_type) {
input1_ = AddInput(TensorType_BOOL);
input2_ = AddInput(input_type);
input3_ = AddInput(input_type);
output_ = AddOutput(input_type);
}
int input1() { return input1_; }
int input2() { return input2_; }
int input3() { return input3_; }
template <typename T>
std::vector<T> GetOutput() {
return ExtractVector<T>(output_);
}
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
protected:
int input1_;
int input2_;
int input3_;
int output_;
};
class SelectOpModel : public BaseSelectOpModel {
public:
SelectOpModel(std::initializer_list<int> input1_shape,
std::initializer_list<int> input2_shape,
std::initializer_list<int> input3_shape, TensorType input_type)
: BaseSelectOpModel(input1_shape, input2_shape, input3_shape,
input_type) {
SetBuiltinOp(BuiltinOperator_SELECT, BuiltinOptions_SelectOptions,
CreateSelectOptions(builder_).Union());
BuildInterpreter({input1_shape, input2_shape, input3_shape});
}
};
class SelectV2OpModel : public BaseSelectOpModel {
public:
SelectV2OpModel(std::initializer_list<int> input1_shape,
std::initializer_list<int> input2_shape,
std::initializer_list<int> input3_shape,
TensorType input_type)
: BaseSelectOpModel(input1_shape, input2_shape, input3_shape,
input_type) {
SetBuiltinOp(BuiltinOperator_SELECT_V2, BuiltinOptions_SelectV2Options,
CreateSelectV2Options(builder_).Union());
BuildInterpreter({input1_shape, input2_shape, input3_shape});
}
};
TEST(SelectOpTest, SelectBool) {
SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_BOOL);
model.PopulateTensor<bool>(model.input1(), {true, false, true, false});
model.PopulateTensor<bool>(model.input2(), {false, false, false, false});
model.PopulateTensor<bool>(model.input3(), {true, true, true, true});
model.Invoke();
EXPECT_THAT(model.GetOutput<bool>(),
ElementsAreArray({false, true, false, true}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectOpTest, SelectFloat) {
SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_FLOAT32);
model.PopulateTensor<bool>(model.input1(), {true, false, true, false});
model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.3, 0.4});
model.PopulateTensor<float>(model.input3(), {0.5, 0.6, 0.7, 0.8});
model.Invoke();
EXPECT_THAT(model.GetOutput<float>(), ElementsAreArray({0.1, 0.6, 0.3, 0.8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectOpTest, SelectUInt8) {
SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_UINT8);
model.PopulateTensor<bool>(model.input1(), {false, true, false, false});
model.PopulateTensor<uint8_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<uint8_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<uint8_t>(), ElementsAreArray({5, 2, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectOpTest, SelectInt8) {
SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_INT8);
model.PopulateTensor<bool>(model.input1(), {false, true, false, false});
model.PopulateTensor<int8_t>(model.input2(), {1, -2, 3, 4});
model.PopulateTensor<int8_t>(model.input3(), {5, 6, 7, -8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int8_t>(), ElementsAreArray({5, -2, 7, -8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectOpTest, SelectInt16) {
SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_INT16);
model.PopulateTensor<bool>(model.input1(), {false, true, false, false});
model.PopulateTensor<int16_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int16_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int16_t>(), ElementsAreArray({5, 2, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectOpTest, SelectInt32) {
SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false, true, false, false});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 2, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectOpTest, RankOneSelectInt32) {
SelectOpModel model({2}, {2, 1, 2, 1}, {2, 1, 2, 1}, TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false, true});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 6, 3, 4}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 1, 2, 1}));
}
TEST(SelectOpTest, ScalarFalseConditionInt32) {
if (SingleOpModel::GetForceUseNnapi()) {
return;
}
SelectOpModel model({}, {2, 1, 2, 1}, {2, 1, 2, 1}, TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 6, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 1, 2, 1}));
}
TEST(SelectOpTest, ScalarTrueConditionInt32) {
if (SingleOpModel::GetForceUseNnapi()) {
return;
}
SelectOpModel model({}, {2, 1, 2, 1}, {2, 1, 2, 1}, TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {true});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({1, 2, 3, 4}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 1, 2, 1}));
}
TEST(SelectOpTest, RankZeroSelectInt32) {
SelectOpModel model({1}, {1, 2, 2, 1}, {1, 2, 2, 1}, TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 6, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 2, 1}));
}
TEST(SelectV2OpTest, SelectBool) {
SelectV2OpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_BOOL);
model.PopulateTensor<bool>(model.input1(), {true, false, true, false});
model.PopulateTensor<bool>(model.input2(), {false, false, false, false});
model.PopulateTensor<bool>(model.input3(), {true, true, true, true});
model.Invoke();
EXPECT_THAT(model.GetOutput<bool>(),
ElementsAreArray({false, true, false, true}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectV2OpTest, SelectFloat) {
SelectV2OpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_FLOAT32);
model.PopulateTensor<bool>(model.input1(), {true, false, true, false});
model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.3, 0.4});
model.PopulateTensor<float>(model.input3(), {0.5, 0.6, 0.7, 0.8});
model.Invoke();
EXPECT_THAT(model.GetOutput<float>(), ElementsAreArray({0.1, 0.6, 0.3, 0.8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectV2OpTest, SelectUInt8) {
SelectV2OpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_UINT8);
model.PopulateTensor<bool>(model.input1(), {false, true, false, false});
model.PopulateTensor<uint8_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<uint8_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<uint8_t>(), ElementsAreArray({5, 2, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectV2OpTest, SelectInt8) {
SelectV2OpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_INT8);
model.PopulateTensor<bool>(model.input1(), {false, true, false, false});
model.PopulateTensor<int8_t>(model.input2(), {1, -2, 3, 4});
model.PopulateTensor<int8_t>(model.input3(), {5, 6, 7, -8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int8_t>(), ElementsAreArray({5, -2, 7, -8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectV2OpTest, SelectInt16) {
SelectV2OpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_INT16);
model.PopulateTensor<bool>(model.input1(), {false, true, false, false});
model.PopulateTensor<int16_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int16_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int16_t>(), ElementsAreArray({5, 2, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectV2OpTest, SelectInt32) {
SelectV2OpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4},
TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false, true, false, false});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 2, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4}));
}
TEST(SelectV2OpTest, BroadcastSelectInt32OneDimensionConditionWithSingleValue) {
SelectV2OpModel model({1}, {1, 2, 2, 1}, {1, 2, 2, 1}, TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 6, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 2, 1}));
}
TEST(SelectV2OpTest, BroadcastSelectInt32LesserThan4D) {
SelectV2OpModel model({1, 2}, {1, 2, 2}, {1, 2, 2}, TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false, true});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 2, 7, 4}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 2}));
}
TEST(SelectV2OpTest, BroadcastSelectInt32OnFalseValue) {
SelectV2OpModel model({1, 1}, {1, 1, 2, 2}, {1, 1, 2, 2}, TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 6, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 2, 2}));
}
TEST(SelectV2OpTest, BroadcastSelectInt32) {
SelectV2OpModel model({1, 2}, {1, 2, 2}, {1, 2, 2}, TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false, true});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 2, 7, 4}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 2}));
}
TEST(SelectV2OpTest, BroadcastSelectInt32OneDimensionConditionWithTwoValues) {
SelectV2OpModel model({2}, {2, 1, 2, 1}, {2, 1, 2, 1}, TensorType_INT32);
model.PopulateTensor<bool>(model.input1(), {false, true});
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.input3(), {5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutput<int32_t>(),
ElementsAreArray({5, 1, 6, 2, 7, 3, 8, 4}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 1, 2, 2}));
}
} // namespace
} // namespace tflite