STT-tensorflow/tensorflow/lite/kernels/reverse_test.cc
Taehee Jeong 9be3ad213b Add INT8 type support for reverse op
* Added QI8 type support in tfl_ops.td
* Added ReverseV2 op version 3 with int8 type support

PiperOrigin-RevId: 348726608
Change-Id: I7003d7eff031e8ac12b55747fa5afaf9e3ab2a52
2020-12-22 18:54:10 -08:00

224 lines
8.0 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <vector>
#include <gtest/gtest.h>
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
template <typename T>
class ReverseOpModel : public SingleOpModel {
public:
ReverseOpModel(const TensorData& input, const TensorData& axis) {
input_ = AddInput(input);
axis_ = AddInput(axis);
output_ = AddOutput({input.type, {}});
SetBuiltinOp(BuiltinOperator_REVERSE_V2, BuiltinOptions_ReverseV2Options,
CreateReverseV2Options(builder_).Union());
BuildInterpreter({GetShape(input_)});
}
int input() { return input_; }
int axis() { return axis_; }
std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
private:
int input_;
int axis_;
int output_;
};
// float32 tests.
TEST(ReverseOpTest, FloatOneDimension) {
ReverseOpModel<float> model({TensorType_FLOAT32, {4}},
{TensorType_INT32, {1}});
model.PopulateTensor<float>(model.input(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.axis(), {0});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4));
EXPECT_THAT(model.GetOutput(), ElementsAreArray({4, 3, 2, 1}));
}
TEST(ReverseOpTest, FloatMultiDimensions) {
ReverseOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}},
{TensorType_INT32, {1}});
model.PopulateTensor<float>(model.input(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
model.PopulateTensor<int32_t>(model.axis(), {1});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({5, 6, 3, 4, 1, 2, 11, 12, 9, 10, 7, 8,
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
}
// int32 tests
TEST(ReverseOpTest, Int32OneDimension) {
ReverseOpModel<int32_t> model({TensorType_INT32, {4}},
{TensorType_INT32, {1}});
model.PopulateTensor<int32_t>(model.input(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.axis(), {0});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4));
EXPECT_THAT(model.GetOutput(), ElementsAreArray({4, 3, 2, 1}));
}
TEST(ReverseOpTest, Int32MultiDimensions) {
ReverseOpModel<int32_t> model({TensorType_INT32, {4, 3, 2}},
{TensorType_INT32, {1}});
model.PopulateTensor<int32_t>(
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
model.PopulateTensor<int32_t>(model.axis(), {1});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({5, 6, 3, 4, 1, 2, 11, 12, 9, 10, 7, 8,
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
}
// int64 tests
TEST(ReverseOpTest, Int64OneDimension) {
ReverseOpModel<int64_t> model({TensorType_INT64, {4}},
{TensorType_INT32, {1}});
model.PopulateTensor<int64_t>(model.input(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.axis(), {0});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4));
EXPECT_THAT(model.GetOutput(), ElementsAreArray({4, 3, 2, 1}));
}
TEST(ReverseOpTest, Int64MultiDimensions) {
ReverseOpModel<int64_t> model({TensorType_INT64, {4, 3, 2}},
{TensorType_INT32, {1}});
model.PopulateTensor<int64_t>(
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
model.PopulateTensor<int32_t>(model.axis(), {1});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({5, 6, 3, 4, 1, 2, 11, 12, 9, 10, 7, 8,
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
}
// uint8 tests
TEST(ReverseOpTest, Uint8OneDimension) {
ReverseOpModel<uint8_t> model({TensorType_UINT8, {4}},
{TensorType_INT32, {1}});
model.PopulateTensor<uint8_t>(model.input(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.axis(), {0});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4));
EXPECT_THAT(model.GetOutput(), ElementsAreArray({4, 3, 2, 1}));
}
TEST(ReverseOpTest, Uint8MultiDimensions) {
ReverseOpModel<uint8_t> model({TensorType_UINT8, {4, 3, 2}},
{TensorType_INT32, {1}});
model.PopulateTensor<uint8_t>(
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
model.PopulateTensor<int32_t>(model.axis(), {1});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({5, 6, 3, 4, 1, 2, 11, 12, 9, 10, 7, 8,
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
}
// int8 tests
TEST(ReverseOpTest, Int8OneDimension) {
ReverseOpModel<int8_t> model({TensorType_INT8, {4}}, {TensorType_INT32, {1}});
model.PopulateTensor<int8_t>(model.input(), {1, 2, -1, -2});
model.PopulateTensor<int32_t>(model.axis(), {0});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4));
EXPECT_THAT(model.GetOutput(), ElementsAreArray({-2, -1, 2, 1}));
}
TEST(ReverseOpTest, Int8MultiDimensions) {
ReverseOpModel<int8_t> model({TensorType_INT8, {4, 3, 2}},
{TensorType_INT32, {1}});
model.PopulateTensor<int8_t>(
model.input(), {-1, -2, -3, -4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, -21, -22, -23, -24});
model.PopulateTensor<int32_t>(model.axis(), {1});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({5, 6, -3, -4, -1, -2, 11, 12, 9, 10, 7, 8,
17, 18, 15, 16, 13, 14, -23, -24, -21, -22, 19, 20}));
}
// int16 tests
TEST(ReverseOpTest, Int16OneDimension) {
ReverseOpModel<int16_t> model({TensorType_INT16, {4}},
{TensorType_INT32, {1}});
model.PopulateTensor<int16_t>(model.input(), {1, 2, 3, 4});
model.PopulateTensor<int32_t>(model.axis(), {0});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4));
EXPECT_THAT(model.GetOutput(), ElementsAreArray({4, 3, 2, 1}));
}
TEST(ReverseOpTest, Int16MultiDimensions) {
ReverseOpModel<int16_t> model({TensorType_INT16, {4, 3, 2}},
{TensorType_INT32, {1}});
model.PopulateTensor<int16_t>(
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
model.PopulateTensor<int32_t>(model.axis(), {1});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
EXPECT_THAT(
model.GetOutput(),
ElementsAreArray({5, 6, 3, 4, 1, 2, 11, 12, 9, 10, 7, 8,
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
}
} // namespace
} // namespace tflite