As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332521299 Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
517 lines
23 KiB
C++
517 lines
23 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/optimized/integer_ops/pooling.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <cstdlib>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/pooling.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/padding.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace pooling {
|
|
|
|
// This file has two implementation of each pooling op.
|
|
enum KernelType {
|
|
kReference,
|
|
kGenericOptimized,
|
|
};
|
|
|
|
enum PoolType {
|
|
kAverage,
|
|
kMax,
|
|
kL2,
|
|
};
|
|
|
|
struct OpData {
|
|
TfLitePaddingValues padding;
|
|
};
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
// This is a builtin op, so we don't use the contents in 'buffer', if any.
|
|
// Instead, we allocate a new object to carry information from Prepare() to
|
|
// Eval().
|
|
return new OpData;
|
|
}
|
|
|
|
void Free(TfLiteContext* context, void* buffer) {
|
|
delete reinterpret_cast<OpData*>(buffer);
|
|
}
|
|
|
|
template <PoolType pool_type>
|
|
TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
|
|
|
int batches = input->dims->data[0];
|
|
int height = input->dims->data[1];
|
|
int width = input->dims->data[2];
|
|
int channels_out = input->dims->data[3];
|
|
|
|
// Matching GetWindowedOutputSize in TensorFlow.
|
|
auto padding = params->padding;
|
|
int out_width, out_height;
|
|
|
|
data->padding = ComputePaddingHeightWidth(
|
|
params->stride_height, params->stride_width, 1, 1, height, width,
|
|
params->filter_height, params->filter_width, padding, &out_height,
|
|
&out_width);
|
|
|
|
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
|
|
if (pool_type == kAverage || pool_type == kMax) {
|
|
TFLITE_DCHECK_LE(std::abs(input->params.scale - output->params.scale),
|
|
1.0e-6);
|
|
TFLITE_DCHECK_EQ(input->params.zero_point, output->params.zero_point);
|
|
}
|
|
if (pool_type == kL2) {
|
|
// We currently don't have a quantized implementation of L2Pool
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
|
|
}
|
|
}
|
|
|
|
TfLiteIntArray* output_size = TfLiteIntArrayCreate(4);
|
|
output_size->data[0] = batches;
|
|
output_size->data[1] = out_height;
|
|
output_size->data[2] = out_width;
|
|
output_size->data[3] = channels_out;
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void AverageEvalFloat(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input, TfLiteTensor* output) {
|
|
float activation_min, activation_max;
|
|
CalculateActivationRange(params->activation, &activation_min,
|
|
&activation_max);
|
|
#define TF_LITE_AVERAGE_POOL(type) \
|
|
tflite::PoolParams op_params; \
|
|
op_params.stride_height = params->stride_height; \
|
|
op_params.stride_width = params->stride_width; \
|
|
op_params.filter_height = params->filter_height; \
|
|
op_params.filter_width = params->filter_width; \
|
|
op_params.padding_values.height = data->padding.height; \
|
|
op_params.padding_values.width = data->padding.width; \
|
|
op_params.float_activation_min = activation_min; \
|
|
op_params.float_activation_max = activation_max; \
|
|
type::AveragePool(op_params, GetTensorShape(input), \
|
|
GetTensorData<float>(input), GetTensorShape(output), \
|
|
GetTensorData<float>(output))
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_AVERAGE_POOL(reference_ops);
|
|
} else {
|
|
TF_LITE_AVERAGE_POOL(optimized_ops);
|
|
}
|
|
#undef TF_LITE_AVERAGE_POOL
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void AverageEvalQuantizedUint8(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input,
|
|
TfLiteTensor* output) {
|
|
int32_t activation_min;
|
|
int32_t activation_max;
|
|
(void)CalculateActivationRangeQuantized(context, params->activation, output,
|
|
&activation_min, &activation_max);
|
|
#define TF_LITE_AVERAGE_POOL(type) \
|
|
tflite::PoolParams op_params; \
|
|
op_params.stride_height = params->stride_height; \
|
|
op_params.stride_width = params->stride_width; \
|
|
op_params.filter_height = params->filter_height; \
|
|
op_params.filter_width = params->filter_width; \
|
|
op_params.padding_values.height = data->padding.height; \
|
|
op_params.padding_values.width = data->padding.width; \
|
|
op_params.quantized_activation_min = activation_min; \
|
|
op_params.quantized_activation_max = activation_max; \
|
|
type::AveragePool(op_params, GetTensorShape(input), \
|
|
GetTensorData<uint8_t>(input), GetTensorShape(output), \
|
|
GetTensorData<uint8_t>(output))
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_AVERAGE_POOL(reference_ops);
|
|
} else {
|
|
TF_LITE_AVERAGE_POOL(optimized_ops);
|
|
}
|
|
#undef TF_LITE_AVERAGE_POOL
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void AverageEvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input, TfLiteTensor* output) {
|
|
int32_t activation_min;
|
|
int32_t activation_max;
|
|
|
|
(void)CalculateActivationRangeQuantized(context, params->activation, output,
|
|
&activation_min, &activation_max);
|
|
#define TF_LITE_AVERAGE_POOL(type) \
|
|
tflite::PoolParams op_params; \
|
|
op_params.stride_height = params->stride_height; \
|
|
op_params.stride_width = params->stride_width; \
|
|
op_params.filter_height = params->filter_height; \
|
|
op_params.filter_width = params->filter_width; \
|
|
op_params.padding_values.height = data->padding.height; \
|
|
op_params.padding_values.width = data->padding.width; \
|
|
op_params.quantized_activation_min = activation_min; \
|
|
op_params.quantized_activation_max = activation_max; \
|
|
type::AveragePool(op_params, GetTensorShape(input), \
|
|
GetTensorData<int8_t>(input), GetTensorShape(output), \
|
|
GetTensorData<int8_t>(output))
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_AVERAGE_POOL(reference_integer_ops);
|
|
} else {
|
|
TF_LITE_AVERAGE_POOL(optimized_integer_ops);
|
|
}
|
|
#undef TF_LITE_AVERAGE_POOL
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void AverageEvalQuantizedInt16(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input,
|
|
TfLiteTensor* output) {
|
|
int32_t activation_min;
|
|
int32_t activation_max;
|
|
CalculateActivationRangeQuantized(context, params->activation, output,
|
|
&activation_min, &activation_max);
|
|
#define TF_LITE_AVERAGE_POOL(type) \
|
|
tflite::PoolParams op_params; \
|
|
op_params.stride_height = params->stride_height; \
|
|
op_params.stride_width = params->stride_width; \
|
|
op_params.filter_height = params->filter_height; \
|
|
op_params.filter_width = params->filter_width; \
|
|
op_params.padding_values.height = data->padding.height; \
|
|
op_params.padding_values.width = data->padding.width; \
|
|
op_params.quantized_activation_min = activation_min; \
|
|
op_params.quantized_activation_max = activation_max; \
|
|
type::AveragePool(op_params, GetTensorShape(input), \
|
|
GetTensorData<int16_t>(input), GetTensorShape(output), \
|
|
GetTensorData<int16_t>(output))
|
|
TF_LITE_AVERAGE_POOL(reference_integer_ops);
|
|
#undef TF_LITE_AVERAGE_POOL
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void MaxEvalFloat(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input, TfLiteTensor* output) {
|
|
float activation_min, activation_max;
|
|
CalculateActivationRange(params->activation, &activation_min,
|
|
&activation_max);
|
|
#define TF_LITE_MAX_POOL(type) \
|
|
tflite::PoolParams op_params; \
|
|
op_params.stride_height = params->stride_height; \
|
|
op_params.stride_width = params->stride_width; \
|
|
op_params.filter_height = params->filter_height; \
|
|
op_params.filter_width = params->filter_width; \
|
|
op_params.padding_values.height = data->padding.height; \
|
|
op_params.padding_values.width = data->padding.width; \
|
|
op_params.float_activation_min = activation_min; \
|
|
op_params.float_activation_max = activation_max; \
|
|
type::MaxPool(op_params, GetTensorShape(input), GetTensorData<float>(input), \
|
|
GetTensorShape(output), GetTensorData<float>(output))
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_MAX_POOL(reference_ops);
|
|
} else {
|
|
TF_LITE_MAX_POOL(optimized_ops);
|
|
}
|
|
#undef TF_LITE_MAX_POOL
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void MaxEvalQuantizedUInt8(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input, TfLiteTensor* output) {
|
|
int32_t activation_min;
|
|
int32_t activation_max;
|
|
(void)CalculateActivationRangeQuantized(context, params->activation, output,
|
|
&activation_min, &activation_max);
|
|
#define TF_LITE_MAX_POOL(type) \
|
|
tflite::PoolParams op_params; \
|
|
op_params.stride_height = params->stride_height; \
|
|
op_params.stride_width = params->stride_width; \
|
|
op_params.filter_height = params->filter_height; \
|
|
op_params.filter_width = params->filter_width; \
|
|
op_params.padding_values.height = data->padding.height; \
|
|
op_params.padding_values.width = data->padding.width; \
|
|
op_params.quantized_activation_min = activation_min; \
|
|
op_params.quantized_activation_max = activation_max; \
|
|
type::MaxPool(op_params, GetTensorShape(input), \
|
|
GetTensorData<uint8_t>(input), GetTensorShape(output), \
|
|
GetTensorData<uint8_t>(output))
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_MAX_POOL(reference_ops);
|
|
} else {
|
|
TF_LITE_MAX_POOL(optimized_ops);
|
|
}
|
|
#undef TF_LITE_MAX_POOL
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void MaxEvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input, TfLiteTensor* output) {
|
|
int32_t activation_min;
|
|
int32_t activation_max;
|
|
(void)CalculateActivationRangeQuantized(context, params->activation, output,
|
|
&activation_min, &activation_max);
|
|
#define TF_LITE_MAX_POOL(type) \
|
|
tflite::PoolParams op_params; \
|
|
op_params.stride_height = params->stride_height; \
|
|
op_params.stride_width = params->stride_width; \
|
|
op_params.filter_height = params->filter_height; \
|
|
op_params.filter_width = params->filter_width; \
|
|
op_params.padding_values.height = data->padding.height; \
|
|
op_params.padding_values.width = data->padding.width; \
|
|
op_params.quantized_activation_min = activation_min; \
|
|
op_params.quantized_activation_max = activation_max; \
|
|
type::MaxPool(op_params, GetTensorShape(input), \
|
|
GetTensorData<int8_t>(input), GetTensorShape(output), \
|
|
GetTensorData<int8_t>(output))
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_MAX_POOL(reference_integer_ops);
|
|
} else {
|
|
TF_LITE_MAX_POOL(optimized_integer_ops);
|
|
}
|
|
#undef TF_LITE_MAX_POOL
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void MaxEvalQuantizedInt16(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input, TfLiteTensor* output) {
|
|
int32_t activation_min;
|
|
int32_t activation_max;
|
|
CalculateActivationRangeQuantized(context, params->activation, output,
|
|
&activation_min, &activation_max);
|
|
#define TF_LITE_MAX_POOL(type) \
|
|
tflite::PoolParams op_params; \
|
|
op_params.stride_height = params->stride_height; \
|
|
op_params.stride_width = params->stride_width; \
|
|
op_params.filter_height = params->filter_height; \
|
|
op_params.filter_width = params->filter_width; \
|
|
op_params.padding_values.height = data->padding.height; \
|
|
op_params.padding_values.width = data->padding.width; \
|
|
op_params.quantized_activation_min = activation_min; \
|
|
op_params.quantized_activation_max = activation_max; \
|
|
type::MaxPool(op_params, GetTensorShape(input), \
|
|
GetTensorData<int16_t>(input), GetTensorShape(output), \
|
|
GetTensorData<int16_t>(output))
|
|
TF_LITE_MAX_POOL(reference_integer_ops);
|
|
#undef TF_LITE_MAX_POOL
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void L2EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input, TfLiteTensor* output) {
|
|
float activation_min, activation_max;
|
|
CalculateActivationRange(params->activation, &activation_min,
|
|
&activation_max);
|
|
#define TF_LITE_L2_POOL(type) \
|
|
tflite::PoolParams op_params; \
|
|
op_params.stride_height = params->stride_height; \
|
|
op_params.stride_width = params->stride_width; \
|
|
op_params.filter_height = params->filter_height; \
|
|
op_params.filter_width = params->filter_width; \
|
|
op_params.padding_values.height = data->padding.height; \
|
|
op_params.padding_values.width = data->padding.width; \
|
|
op_params.float_activation_min = activation_min; \
|
|
op_params.float_activation_max = activation_max; \
|
|
type::L2Pool(op_params, GetTensorShape(input), GetTensorData<float>(input), \
|
|
GetTensorShape(output), GetTensorData<float>(output))
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_L2_POOL(reference_ops);
|
|
} else {
|
|
TF_LITE_L2_POOL(optimized_ops);
|
|
}
|
|
#undef TF_LITE_L2_POOL
|
|
}
|
|
|
|
#undef TF_LITE_KERNEL_TYPE_DISPATCH
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
|
|
switch (input->type) { // Already know in/out types are same.
|
|
case kTfLiteFloat32:
|
|
AverageEvalFloat<kernel_type>(context, node, params, data, input, output);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
AverageEvalQuantizedUint8<kernel_type>(context, node, params, data, input,
|
|
output);
|
|
break;
|
|
case kTfLiteInt8:
|
|
AverageEvalQuantizedInt8<kernel_type>(context, node, params, data, input,
|
|
output);
|
|
break;
|
|
case kTfLiteInt16:
|
|
AverageEvalQuantizedInt16<kernel_type>(context, node, params, data, input,
|
|
output);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
|
|
switch (input->type) { // Already know in/out types are same.
|
|
case kTfLiteFloat32:
|
|
MaxEvalFloat<kernel_type>(context, node, params, data, input, output);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
MaxEvalQuantizedUInt8<kernel_type>(context, node, params, data, input,
|
|
output);
|
|
break;
|
|
case kTfLiteInt8:
|
|
MaxEvalQuantizedInt8<kernel_type>(context, node, params, data, input,
|
|
output);
|
|
break;
|
|
case kTfLiteInt16:
|
|
MaxEvalQuantizedInt16<kernel_type>(context, node, params, data, input,
|
|
output);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus L2Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
|
|
switch (input->type) { // Already know in/out types are same.
|
|
case kTfLiteFloat32:
|
|
L2EvalFloat<kernel_type>(context, node, params, data, input, output);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
// We don't have a quantized implementation, so just fall through to the
|
|
// 'default' case.
|
|
default:
|
|
context->ReportError(context, "Type %d not currently supported.",
|
|
input->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace pooling
|
|
|
|
TfLiteRegistration* Register_AVERAGE_POOL_REF() {
|
|
static TfLiteRegistration r = {pooling::Init, pooling::Free,
|
|
pooling::GenericPrepare<pooling::kAverage>,
|
|
pooling::AverageEval<pooling::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_MAX_POOL_REF() {
|
|
static TfLiteRegistration r = {pooling::Init, pooling::Free,
|
|
pooling::GenericPrepare<pooling::kMax>,
|
|
pooling::MaxEval<pooling::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_L2_POOL_REF() {
|
|
static TfLiteRegistration r = {pooling::Init, pooling::Free,
|
|
pooling::GenericPrepare<pooling::kL2>,
|
|
pooling::L2Eval<pooling::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_AVERAGE_POOL_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {
|
|
pooling::Init, pooling::Free, pooling::GenericPrepare<pooling::kAverage>,
|
|
pooling::AverageEval<pooling::kGenericOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_MAX_POOL_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {pooling::Init, pooling::Free,
|
|
pooling::GenericPrepare<pooling::kMax>,
|
|
pooling::MaxEval<pooling::kGenericOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_L2_POOL_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {pooling::Init, pooling::Free,
|
|
pooling::GenericPrepare<pooling::kL2>,
|
|
pooling::L2Eval<pooling::kGenericOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_AVERAGE_POOL_2D() {
|
|
return Register_AVERAGE_POOL_GENERIC_OPT();
|
|
}
|
|
|
|
TfLiteRegistration* Register_MAX_POOL_2D() {
|
|
return Register_MAX_POOL_GENERIC_OPT();
|
|
}
|
|
|
|
TfLiteRegistration* Register_L2_POOL_2D() {
|
|
return Register_L2_POOL_GENERIC_OPT();
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|