236 lines
8.4 KiB
C++
236 lines
8.4 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/reference/maximum_minimum.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace maximum_minimum {
|
|
|
|
// This file has a reference implementation of TFMaximum/TFMinimum.
|
|
enum KernelType {
|
|
kReference,
|
|
kGenericOptimized,
|
|
};
|
|
|
|
constexpr int kInputTensor1 = 0;
|
|
constexpr int kInputTensor2 = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct OpContext {
|
|
OpContext(TfLiteContext* context, TfLiteNode* node) {
|
|
input1 = GetInput(context, node, kInputTensor1);
|
|
input2 = GetInput(context, node, kInputTensor2);
|
|
output = GetOutput(context, node, kOutputTensor);
|
|
}
|
|
const TfLiteTensor* input1;
|
|
const TfLiteTensor* input2;
|
|
TfLiteTensor* output;
|
|
};
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
OpContext op_context(context, node);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, op_context.input1->type,
|
|
op_context.input2->type);
|
|
op_context.output->type = op_context.input1->type;
|
|
|
|
bool requires_broadcast =
|
|
!HaveSameShapes(op_context.input1, op_context.input2);
|
|
|
|
TfLiteIntArray* output_size = nullptr;
|
|
if (requires_broadcast) {
|
|
TF_LITE_ENSURE_OK(
|
|
context, CalculateShapeForBroadcast(context, op_context.input1,
|
|
op_context.input2, &output_size));
|
|
} else {
|
|
output_size = TfLiteIntArrayCopy(op_context.input1->dims);
|
|
}
|
|
|
|
return context->ResizeTensor(context, op_context.output, output_size);
|
|
}
|
|
|
|
struct MaximumOp {
|
|
template <typename data_type>
|
|
static data_type op(data_type el1, data_type el2) {
|
|
return el1 > el2 ? el1 : el2;
|
|
}
|
|
};
|
|
|
|
struct MinimumOp {
|
|
template <typename data_type>
|
|
static data_type op(data_type el1, data_type el2) {
|
|
return el1 < el2 ? el1 : el2;
|
|
}
|
|
};
|
|
|
|
template <KernelType kernel_type, typename data_type, typename op_type>
|
|
void TFLiteOperation(TfLiteContext* context, TfLiteNode* node,
|
|
const OpContext& op_context) {
|
|
reference_ops::MaximumMinimumBroadcastSlow(
|
|
GetTensorShape(op_context.input1),
|
|
GetTensorData<data_type>(op_context.input1),
|
|
GetTensorShape(op_context.input2),
|
|
GetTensorData<data_type>(op_context.input2),
|
|
GetTensorShape(op_context.output),
|
|
GetTensorData<data_type>(op_context.output),
|
|
op_type::template op<data_type>);
|
|
}
|
|
|
|
// Maximum generic opt int8.
|
|
template <>
|
|
void TFLiteOperation<maximum_minimum::kGenericOptimized, int8, MaximumOp>(
|
|
TfLiteContext* context, TfLiteNode* node, const OpContext& op_context) {
|
|
tflite::ArithmeticParams op_params;
|
|
const bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
|
|
GetTensorShape(op_context.input1), GetTensorShape(op_context.input2),
|
|
&op_params);
|
|
if (need_broadcast) {
|
|
optimized_ops::BroadcastMaximumDispatch(
|
|
op_params, GetTensorShape(op_context.input1),
|
|
GetTensorData<int8>(op_context.input1),
|
|
GetTensorShape(op_context.input2),
|
|
GetTensorData<int8>(op_context.input2),
|
|
GetTensorShape(op_context.output),
|
|
GetTensorData<int8>(op_context.output), MaximumOp::template op<int8>);
|
|
return;
|
|
}
|
|
reference_ops::MaximumMinimumBroadcastSlow(
|
|
GetTensorShape(op_context.input1), GetTensorData<int8>(op_context.input1),
|
|
GetTensorShape(op_context.input2), GetTensorData<int8>(op_context.input2),
|
|
GetTensorShape(op_context.output), GetTensorData<int8>(op_context.output),
|
|
MaximumOp::template op<int8>);
|
|
}
|
|
|
|
// Minimum generic opt int8.
|
|
template <>
|
|
void TFLiteOperation<maximum_minimum::kGenericOptimized, int8, MinimumOp>(
|
|
TfLiteContext* context, TfLiteNode* node, const OpContext& op_context) {
|
|
tflite::ArithmeticParams op_params;
|
|
const bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
|
|
GetTensorShape(op_context.input1), GetTensorShape(op_context.input2),
|
|
&op_params);
|
|
if (need_broadcast) {
|
|
optimized_ops::BroadcastMinimumDispatch(
|
|
op_params, GetTensorShape(op_context.input1),
|
|
GetTensorData<int8>(op_context.input1),
|
|
GetTensorShape(op_context.input2),
|
|
GetTensorData<int8>(op_context.input2),
|
|
GetTensorShape(op_context.output),
|
|
GetTensorData<int8>(op_context.output), MinimumOp::template op<int8>);
|
|
return;
|
|
}
|
|
reference_ops::MaximumMinimumBroadcastSlow(
|
|
GetTensorShape(op_context.input1), GetTensorData<int8>(op_context.input1),
|
|
GetTensorShape(op_context.input2), GetTensorData<int8>(op_context.input2),
|
|
GetTensorShape(op_context.output), GetTensorData<int8>(op_context.output),
|
|
MinimumOp::template op<int8>);
|
|
}
|
|
|
|
template <KernelType kernel_type, typename OpType>
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
OpContext op_context(context, node);
|
|
|
|
switch (op_context.output->type) {
|
|
case kTfLiteFloat32:
|
|
TFLiteOperation<kernel_type, float, OpType>(context, node, op_context);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
TFLiteOperation<kernel_type, uint8_t, OpType>(context, node,
|
|
op_context);
|
|
break;
|
|
case kTfLiteInt8:
|
|
TFLiteOperation<kernel_type, int8_t, OpType>(context, node, op_context);
|
|
break;
|
|
case kTfLiteInt32:
|
|
TFLiteOperation<kernel_type, int32_t, OpType>(context, node,
|
|
op_context);
|
|
break;
|
|
case kTfLiteInt64:
|
|
TFLiteOperation<kernel_type, int64_t, OpType>(context, node,
|
|
op_context);
|
|
break;
|
|
case kTfLiteInt16:
|
|
TFLiteOperation<kernel_type, int16_t, OpType>(context, node,
|
|
op_context);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Type %d is currently not supported by Maximum.",
|
|
op_context.output->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace maximum_minimum
|
|
|
|
TfLiteRegistration* Register_MAXIMUM_REF() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, maximum_minimum::Prepare,
|
|
maximum_minimum::Eval<maximum_minimum::kReference,
|
|
maximum_minimum::MaximumOp>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_MAXIMUM_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, maximum_minimum::Prepare,
|
|
maximum_minimum::Eval<maximum_minimum::kGenericOptimized,
|
|
maximum_minimum::MaximumOp>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_MINIMUM_REF() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, maximum_minimum::Prepare,
|
|
maximum_minimum::Eval<maximum_minimum::kReference,
|
|
maximum_minimum::MinimumOp>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_MINIMUM_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, maximum_minimum::Prepare,
|
|
maximum_minimum::Eval<maximum_minimum::kGenericOptimized,
|
|
maximum_minimum::MinimumOp>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_MAXIMUM() {
|
|
return Register_MAXIMUM_GENERIC_OPT();
|
|
}
|
|
TfLiteRegistration* Register_MINIMUM() {
|
|
return Register_MINIMUM_GENERIC_OPT();
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|