STT-tensorflow/tensorflow/lite/kernels/matrix_set_diag.cc
Mihai Maruseac 1970c2158b [tflite]: Insert nullptr checks when obtaining tensors.
As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages.

We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`).

PiperOrigin-RevId: 332521299
Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
2020-09-18 14:13:50 -07:00

155 lines
5.4 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace matrix_set_diag {
constexpr int kInputTensor = 0;
constexpr int kDiagonalTensor = 1;
constexpr int kOutputTensor = 0;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
TfLiteIntArray* input_dims = input->dims;
int input_dims_size = input_dims->size;
TF_LITE_ENSURE(context, input_dims_size >= 2);
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TfLiteIntArray* output_shape = TfLiteIntArrayCreate(input_dims_size);
for (int i = 0; i < input_dims_size; i++) {
output_shape->data[i] = input_dims->data[i];
}
// Resize the output tensor to the same size as the input tensor.
output->type = input->type;
TF_LITE_ENSURE_OK(context,
context->ResizeTensor(context, output, output_shape));
return kTfLiteOk;
}
// Fill the tensor to make a diagonal matrix in each batch, i.e., when
// row index and column index are the same, fill with the next diagonal value.
// All other entries are the same as the input value.
// TODO(b/128636574) Move to reference_ops.
template <typename T>
void FillDiagImpl(const T* in, const T* diag, T* out, const int batch_size,
const int row_size, const int col_size) {
int idx = 0;
for (int b = 0; b < batch_size; b++) {
for (int i = 0; i < row_size; i++) {
for (int j = 0; j < col_size; ++j) {
// diag values go on the diagonal, in values elsewhere
if (i == j) {
out[i * col_size + j] = diag[idx];
idx++;
} else {
out[i * col_size + j] = in[i * col_size + j];
}
}
}
out += row_size * col_size;
in += row_size * col_size;
}
}
template <typename T>
void FillDiag(const TfLiteTensor* input, const TfLiteTensor* diag,
TfLiteTensor* output, const int batch_size, const int row_size,
const int col_size) {
FillDiagImpl<T>(GetTensorData<T>(input), GetTensorData<T>(diag),
GetTensorData<T>(output), batch_size, row_size, col_size);
}
// Fill a tensor with given "diag" values on the diagonal, input values
// elsewhere.
void FillDiagHelper(const TfLiteTensor* input, const TfLiteTensor* diag,
TfLiteTensor* output) {
const int num_output_dims = output->dims->size;
int batch_size = 1;
for (int i = 0; i < num_output_dims - 2; ++i) {
batch_size *= output->dims->data[i];
}
const int row_size = output->dims->data[num_output_dims - 2];
const int col_size = output->dims->data[num_output_dims - 1];
switch (output->type) {
case kTfLiteInt64: {
return FillDiag<int64_t>(input, diag, output, batch_size, row_size,
col_size);
}
case kTfLiteInt32: {
return FillDiag<int32_t>(input, diag, output, batch_size, row_size,
col_size);
}
case kTfLiteInt16: {
return FillDiag<int16_t>(input, diag, output, batch_size, row_size,
col_size);
}
case kTfLiteInt8: {
return FillDiag<int8_t>(input, diag, output, batch_size, row_size,
col_size);
}
case kTfLiteUInt8: {
return FillDiag<uint8_t>(input, diag, output, batch_size, row_size,
col_size);
}
default:
return FillDiag<float>(input, diag, output, batch_size, row_size,
col_size);
}
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
const TfLiteTensor* diag;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kDiagonalTensor, &diag));
FillDiagHelper(input, diag, output);
return kTfLiteOk;
}
} // namespace matrix_set_diag
TfLiteRegistration* Register_MATRIX_SET_DIAG() {
static TfLiteRegistration r = {nullptr, nullptr, matrix_set_diag::Prepare,
matrix_set_diag::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite