STT-tensorflow/tensorflow/lite/kernels/fill_test.cc
Thai Nguyen 49752e0f82 Add Int8 support in TFLite Fill op
PiperOrigin-RevId: 351352604
Change-Id: Ie215ab1ade893ab3963934c4de7c26017fb1b00e
2021-01-12 05:47:58 -08:00

153 lines
5.3 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <initializer_list>
#include <string>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/string_type.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
using ::testing::IsEmpty;
enum class TestType {
kConst = 0,
kDynamic = 1,
};
template <typename dims_type, typename value_type>
class FillOpModel : public SingleOpModel {
public:
explicit FillOpModel(TensorType dims_tensor_type,
std::initializer_list<int> dims_shape,
std::initializer_list<dims_type> dims_data,
value_type value, TestType input_tensor_types) {
if (input_tensor_types == TestType::kDynamic) {
dims_ = AddInput(dims_tensor_type);
value_ = AddInput(GetTensorType<value_type>());
} else {
dims_ = AddConstInput(dims_tensor_type, dims_data, dims_shape);
value_ = AddConstInput(GetTensorType<value_type>(), {value}, {});
}
output_ = AddOutput(GetTensorType<value_type>());
SetBuiltinOp(BuiltinOperator_FILL, BuiltinOptions_FillOptions,
CreateFillOptions(builder_).Union());
BuildInterpreter({dims_shape, {}});
if (input_tensor_types == TestType::kDynamic) {
if (dims_data.size() > 0) {
PopulateTensor<dims_type>(dims_, dims_data);
}
PopulateTensor<value_type>(value_, {value});
}
}
std::vector<value_type> GetOutput() {
return ExtractVector<value_type>(output_);
}
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
protected:
int dims_;
int value_;
int output_;
};
class FillOpTest : public ::testing::TestWithParam<TestType> {};
TEST_P(FillOpTest, FillInt32) {
FillOpModel<int32_t, int32_t> m(TensorType_INT32, {2}, {2, 3}, -11,
GetParam());
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-11, -11, -11, -11, -11, -11}));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3}));
}
TEST_P(FillOpTest, FillInt64) {
FillOpModel<int64_t, int64_t> m(TensorType_INT64, {2}, {2, 4}, 1LL << 45,
GetParam());
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray({1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45,
1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45}));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 4}));
}
TEST_P(FillOpTest, FillFloat) {
FillOpModel<int64_t, float> m(TensorType_INT64, {3}, {2, 2, 2}, 4.0,
GetParam());
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray({4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0}));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
}
TEST_P(FillOpTest, FillFloatInt32Dims) {
FillOpModel<int32_t, float> m(TensorType_INT32, {3}, {2, 2, 2}, 4.0,
GetParam());
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray({4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0}));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
}
TEST_P(FillOpTest, FillOutputScalar) {
FillOpModel<int64_t, float> m(TensorType_INT64, {0}, {}, 4.0, GetParam());
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({4.0}));
EXPECT_THAT(m.GetOutputShape(), IsEmpty());
}
TEST_P(FillOpTest, FillBool) {
FillOpModel<int64_t, bool> m(TensorType_INT64, {3}, {2, 2, 2}, true,
GetParam());
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({true, true, true, true, true,
true, true, true}));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
}
TEST(FillOpTest, FillString) {
FillOpModel<int64_t, std::string> m(TensorType_INT64, {3}, {2, 2, 2}, "AB",
TestType::kDynamic);
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({"AB", "AB", "AB", "AB", "AB",
"AB", "AB", "AB"}));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
}
TEST_P(FillOpTest, FillInt8) {
FillOpModel<int64_t, int8_t> m(TensorType_INT64, {3}, {2, 2, 2}, 5,
GetParam());
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({5, 5, 5, 5, 5, 5, 5, 5}));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
}
INSTANTIATE_TEST_SUITE_P(FillOpTest, FillOpTest,
::testing::Values(TestType::kConst,
TestType::kDynamic));
} // namespace
} // namespace tflite