153 lines
5.3 KiB
C++
153 lines
5.3 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include <initializer_list>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
#include "tensorflow/lite/string_type.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
using ::testing::IsEmpty;
|
|
|
|
enum class TestType {
|
|
kConst = 0,
|
|
kDynamic = 1,
|
|
};
|
|
|
|
template <typename dims_type, typename value_type>
|
|
class FillOpModel : public SingleOpModel {
|
|
public:
|
|
explicit FillOpModel(TensorType dims_tensor_type,
|
|
std::initializer_list<int> dims_shape,
|
|
std::initializer_list<dims_type> dims_data,
|
|
value_type value, TestType input_tensor_types) {
|
|
if (input_tensor_types == TestType::kDynamic) {
|
|
dims_ = AddInput(dims_tensor_type);
|
|
value_ = AddInput(GetTensorType<value_type>());
|
|
} else {
|
|
dims_ = AddConstInput(dims_tensor_type, dims_data, dims_shape);
|
|
value_ = AddConstInput(GetTensorType<value_type>(), {value}, {});
|
|
}
|
|
output_ = AddOutput(GetTensorType<value_type>());
|
|
SetBuiltinOp(BuiltinOperator_FILL, BuiltinOptions_FillOptions,
|
|
CreateFillOptions(builder_).Union());
|
|
BuildInterpreter({dims_shape, {}});
|
|
|
|
if (input_tensor_types == TestType::kDynamic) {
|
|
if (dims_data.size() > 0) {
|
|
PopulateTensor<dims_type>(dims_, dims_data);
|
|
}
|
|
PopulateTensor<value_type>(value_, {value});
|
|
}
|
|
}
|
|
|
|
std::vector<value_type> GetOutput() {
|
|
return ExtractVector<value_type>(output_);
|
|
}
|
|
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
|
|
|
|
protected:
|
|
int dims_;
|
|
int value_;
|
|
int output_;
|
|
};
|
|
|
|
class FillOpTest : public ::testing::TestWithParam<TestType> {};
|
|
|
|
TEST_P(FillOpTest, FillInt32) {
|
|
FillOpModel<int32_t, int32_t> m(TensorType_INT32, {2}, {2, 3}, -11,
|
|
GetParam());
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-11, -11, -11, -11, -11, -11}));
|
|
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3}));
|
|
}
|
|
|
|
TEST_P(FillOpTest, FillInt64) {
|
|
FillOpModel<int64_t, int64_t> m(TensorType_INT64, {2}, {2, 4}, 1LL << 45,
|
|
GetParam());
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray({1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45,
|
|
1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45}));
|
|
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 4}));
|
|
}
|
|
|
|
TEST_P(FillOpTest, FillFloat) {
|
|
FillOpModel<int64_t, float> m(TensorType_INT64, {3}, {2, 2, 2}, 4.0,
|
|
GetParam());
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray({4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0}));
|
|
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
|
|
}
|
|
|
|
TEST_P(FillOpTest, FillFloatInt32Dims) {
|
|
FillOpModel<int32_t, float> m(TensorType_INT32, {3}, {2, 2, 2}, 4.0,
|
|
GetParam());
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray({4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0}));
|
|
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
|
|
}
|
|
|
|
TEST_P(FillOpTest, FillOutputScalar) {
|
|
FillOpModel<int64_t, float> m(TensorType_INT64, {0}, {}, 4.0, GetParam());
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({4.0}));
|
|
EXPECT_THAT(m.GetOutputShape(), IsEmpty());
|
|
}
|
|
|
|
TEST_P(FillOpTest, FillBool) {
|
|
FillOpModel<int64_t, bool> m(TensorType_INT64, {3}, {2, 2, 2}, true,
|
|
GetParam());
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({true, true, true, true, true,
|
|
true, true, true}));
|
|
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
|
|
}
|
|
|
|
TEST(FillOpTest, FillString) {
|
|
FillOpModel<int64_t, std::string> m(TensorType_INT64, {3}, {2, 2, 2}, "AB",
|
|
TestType::kDynamic);
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({"AB", "AB", "AB", "AB", "AB",
|
|
"AB", "AB", "AB"}));
|
|
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
|
|
}
|
|
|
|
TEST_P(FillOpTest, FillInt8) {
|
|
FillOpModel<int64_t, int8_t> m(TensorType_INT64, {3}, {2, 2, 2}, 5,
|
|
GetParam());
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({5, 5, 5, 5, 5, 5, 5, 5}));
|
|
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(FillOpTest, FillOpTest,
|
|
::testing::Values(TestType::kConst,
|
|
TestType::kDynamic));
|
|
|
|
} // namespace
|
|
} // namespace tflite
|