STT-tensorflow/tensorflow/lite/kernels/basic_rnn.cc
Mihai Maruseac 1970c2158b [tflite]: Insert nullptr checks when obtaining tensors.
As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages.

We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`).

PiperOrigin-RevId: 332521299
Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
2020-09-18 14:13:50 -07:00

349 lines
15 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cstddef>
#include <cstdint>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/kernel_utils.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace rnn {
namespace {
struct OpData {
int scratch_tensor_index;
bool compute_row_sums = false;
};
} // namespace
constexpr int kInputTensor = 0;
constexpr int kWeightsTensor = 1;
constexpr int kRecurrentWeightsTensor = 2;
constexpr int kBiasTensor = 3;
constexpr int kHiddenStateTensor = 4;
// Output tensor.
constexpr int kOutputTensor = 0;
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
auto* op_data = new OpData();
context->AddTensors(context, /*tensors_to_add=*/6,
&op_data->scratch_tensor_index);
return op_data;
}
void Free(TfLiteContext* context, void* buffer) {
delete reinterpret_cast<OpData*>(buffer);
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
// Check we have all the inputs and outputs we need.
TF_LITE_ENSURE_EQ(context, node->inputs->size, 5);
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
const TfLiteTensor* input_weights;
TF_LITE_ENSURE_OK(
context, GetInputSafe(context, node, kWeightsTensor, &input_weights));
const TfLiteTensor* recurrent_weights;
TF_LITE_ENSURE_OK(
context,
GetInputSafe(context, node, kRecurrentWeightsTensor, &recurrent_weights));
const TfLiteTensor* bias;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBiasTensor, &bias));
const TfLiteTensor* hidden_state;
TF_LITE_ENSURE_OK(
context, GetInputSafe(context, node, kHiddenStateTensor, &hidden_state));
// Check all the parameters of tensor match within themselves and match the
// input configuration.
const int batch_size = input->dims->data[0];
const int num_units = input_weights->dims->data[0];
TF_LITE_ENSURE_EQ(context, input->dims->data[1],
input_weights->dims->data[1]);
TF_LITE_ENSURE_EQ(context, input_weights->dims->data[0], bias->dims->data[0]);
TF_LITE_ENSURE_EQ(context, recurrent_weights->dims->data[0],
bias->dims->data[0]);
TF_LITE_ENSURE_EQ(context, recurrent_weights->dims->data[1],
bias->dims->data[0]);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_TYPES_EQ(context, input_weights->type,
recurrent_weights->type);
TF_LITE_ENSURE_EQ(context, NumDimensions(hidden_state), 2);
TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[0], batch_size);
TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[1], num_units);
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
// Resize output.
TfLiteIntArray* output_size_array = TfLiteIntArrayCreate(2);
output_size_array->data[0] = batch_size;
output_size_array->data[1] = num_units;
TF_LITE_ENSURE_OK(context,
context->ResizeTensor(context, output, output_size_array));
const bool is_hybrid = IsHybridOp(input, input_weights);
// Allocate temporary tensors to store quantized values of input and
// hidden_state tensors.
if (is_hybrid) {
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
op_data->compute_row_sums = true;
TfLiteIntArrayFree(node->temporaries);
node->temporaries = TfLiteIntArrayCreate(6);
node->temporaries->data[0] = op_data->scratch_tensor_index;
TfLiteTensor* input_quantized;
TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, /*index=*/0,
&input_quantized));
input_quantized->type = input_weights->type;
input_quantized->allocation_type = kTfLiteArenaRw;
if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) {
TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims);
TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized,
input_quantized_size));
}
node->temporaries->data[1] = op_data->scratch_tensor_index + 1;
TfLiteTensor* hidden_state_quantized;
TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, /*index=*/1,
&hidden_state_quantized));
hidden_state_quantized->type = input_weights->type;
hidden_state_quantized->allocation_type = kTfLiteArenaRw;
if (!TfLiteIntArrayEqual(hidden_state_quantized->dims,
hidden_state->dims)) {
TfLiteIntArray* hidden_state_quantized_size =
TfLiteIntArrayCopy(hidden_state->dims);
TF_LITE_ENSURE_OK(context,
context->ResizeTensor(context, hidden_state_quantized,
hidden_state_quantized_size));
}
node->temporaries->data[2] = op_data->scratch_tensor_index + 2;
TfLiteTensor* scaling_factors;
TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, /*index=*/2,
&scaling_factors));
scaling_factors->type = kTfLiteFloat32;
scaling_factors->allocation_type = kTfLiteArenaRw;
int scaling_dims[1] = {batch_size};
if (!TfLiteIntArrayEqualsArray(scaling_factors->dims, 1, scaling_dims)) {
TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1);
scaling_factors_size->data[0] = batch_size;
TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors,
scaling_factors_size));
}
node->temporaries->data[3] = op_data->scratch_tensor_index + 3;
TfLiteTensor* accum_scratch;
TF_LITE_ENSURE_OK(
context, GetTemporarySafe(context, node, /*index=*/3, &accum_scratch));
accum_scratch->type = kTfLiteInt32;
accum_scratch->allocation_type = kTfLiteArenaRw;
int accum_scratch_dims[2] = {num_units, batch_size};
if (!TfLiteIntArrayEqualsArray(accum_scratch->dims, 2,
accum_scratch_dims)) {
TfLiteIntArray* accum_scratch_size = TfLiteIntArrayCreate(2);
accum_scratch_size->data[0] = accum_scratch_dims[0];
accum_scratch_size->data[1] = accum_scratch_dims[1];
TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, accum_scratch,
accum_scratch_size));
}
node->temporaries->data[4] = op_data->scratch_tensor_index + 4;
TfLiteTensor* zero_points;
TF_LITE_ENSURE_OK(
context, GetTemporarySafe(context, node, /*index=*/4, &zero_points));
zero_points->type = kTfLiteInt32;
zero_points->allocation_type = kTfLiteArenaRw;
int zero_points_dims[1] = {batch_size};
if (!TfLiteIntArrayEqualsArray(zero_points->dims, 1, zero_points_dims)) {
TfLiteIntArray* zero_points_size = TfLiteIntArrayCreate(1);
zero_points_size->data[0] = batch_size;
TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, zero_points,
zero_points_size));
}
node->temporaries->data[5] = op_data->scratch_tensor_index + 5;
TfLiteTensor* row_sums;
TF_LITE_ENSURE_OK(context,
GetTemporarySafe(context, node, /*index=*/5, &row_sums));
row_sums->type = kTfLiteInt32;
row_sums->allocation_type = kTfLiteArenaRwPersistent;
int row_sums_dims[2] = {2, num_units};
if (!TfLiteIntArrayEqualsArray(row_sums->dims, 2, row_sums_dims)) {
TfLiteIntArray* row_sums_size = TfLiteIntArrayCreate(2);
row_sums_size->data[0] = row_sums_dims[0];
row_sums_size->data[1] = row_sums_dims[1];
TF_LITE_ENSURE_OK(
context, context->ResizeTensor(context, row_sums, row_sums_size));
}
}
return kTfLiteOk;
}
TfLiteStatus EvalFloat(const TfLiteTensor* input,
const TfLiteTensor* input_weights,
const TfLiteTensor* recurrent_weights,
const TfLiteTensor* bias, const TfLiteRNNParams* params,
TfLiteTensor* hidden_state, TfLiteTensor* output) {
const int batch_size = input->dims->data[0];
const int num_units = input_weights->dims->data[0];
const int input_size = input->dims->data[1];
const int output_batch_leading_dim =
output->dims->data[output->dims->size - 1];
// Initialize the pointer to hidden state.
float* hidden_state_ptr_batch = GetTensorData<float>(hidden_state);
// Initialize the pointer to input and output.
const float* input_ptr_batch = GetTensorData<float>(input);
float* output_ptr_batch = GetTensorData<float>(output);
// Initialize input_weights, recurrent_weights and bias.
const float* input_weights_ptr = GetTensorData<float>(input_weights);
const float* recurrent_weights_ptr = GetTensorData<float>(recurrent_weights);
const float* bias_ptr = GetTensorData<float>(bias);
kernel_utils::RnnBatchStep(
input_ptr_batch, input_weights_ptr, recurrent_weights_ptr, bias_ptr,
input_size, num_units, batch_size, output_batch_leading_dim,
params->activation, hidden_state_ptr_batch, output_ptr_batch);
return kTfLiteOk;
}
TfLiteStatus EvalHybrid(const TfLiteTensor* input,
const TfLiteTensor* input_weights,
const TfLiteTensor* recurrent_weights,
const TfLiteTensor* bias, const TfLiteRNNParams* params,
TfLiteTensor* input_scratch,
TfLiteTensor* hidden_state_scratch,
TfLiteTensor* scaling_factors,
TfLiteTensor* hidden_state, TfLiteTensor* output,
TfLiteTensor* zero_points, TfLiteTensor* accum_scratch,
TfLiteTensor* row_sums, bool* compute_row_sums) {
const int batch_size = input->dims->data[0];
const int num_units = input_weights->dims->data[0];
const int input_size = input->dims->data[1];
const int output_batch_leading_dim =
output->dims->data[output->dims->size - 1];
// Initialize the pointer to hidden state.
float* hidden_state_ptr_batch = GetTensorData<float>(hidden_state);
// Initialize the pointer to input and output.
const float* input_ptr_batch = GetTensorData<float>(input);
float* output_ptr_batch = GetTensorData<float>(output);
// Initialize input_weights, recurrent_weights and bias.
const int8_t* input_weights_ptr = GetTensorData<int8_t>(input_weights);
const int8_t* recurrent_weights_ptr =
GetTensorData<int8_t>(recurrent_weights);
const float* bias_ptr = GetTensorData<float>(bias);
// Get the scale of the quantized weights.
float input_weights_scale = input_weights->params.scale;
float recurrent_weights_scale = recurrent_weights->params.scale;
// Initialize temporary storage for quantized values.
int8_t* quantized_input_ptr = GetTensorData<int8_t>(input_scratch);
int8_t* quantized_hidden_state_ptr =
GetTensorData<int8_t>(hidden_state_scratch);
float* scaling_factors_ptr = GetTensorData<float>(scaling_factors);
int32_t* accum_scratch_ptr = GetTensorData<int32_t>(accum_scratch);
int32_t* zero_points_ptr = nullptr;
int32_t* row_sums_ptr = nullptr;
if (params->asymmetric_quantize_inputs) {
zero_points_ptr = GetTensorData<int32_t>(zero_points);
row_sums_ptr = GetTensorData<int32_t>(row_sums);
}
kernel_utils::RnnBatchStep(
input_ptr_batch, input_weights_ptr, input_weights_scale,
recurrent_weights_ptr, recurrent_weights_scale, bias_ptr, input_size,
num_units, batch_size, output_batch_leading_dim, params->activation,
quantized_input_ptr, quantized_hidden_state_ptr, scaling_factors_ptr,
hidden_state_ptr_batch, output_ptr_batch,
params->asymmetric_quantize_inputs, zero_points_ptr, accum_scratch_ptr,
row_sums_ptr, compute_row_sums);
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteRNNParams*>(node->builtin_data);
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
const TfLiteTensor* input_weights;
TF_LITE_ENSURE_OK(
context, GetInputSafe(context, node, kWeightsTensor, &input_weights));
const TfLiteTensor* recurrent_weights;
TF_LITE_ENSURE_OK(
context,
GetInputSafe(context, node, kRecurrentWeightsTensor, &recurrent_weights));
const TfLiteTensor* bias;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBiasTensor, &bias));
TfLiteTensor* hidden_state =
GetVariableInput(context, node, kHiddenStateTensor);
TF_LITE_ENSURE(context, hidden_state != nullptr);
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
// We already checked that weight types are consistent, so branch on one.
switch (input_weights->type) {
case kTfLiteFloat32:
return EvalFloat(input, input_weights, recurrent_weights, bias, params,
hidden_state, output);
case kTfLiteUInt8:
case kTfLiteInt8: {
// TODO(mirkov): implement eval with quantized inputs as well.
TfLiteTensor* input_quantized;
TF_LITE_ENSURE_OK(context,
GetTemporarySafe(context, node, 0, &input_quantized));
TfLiteTensor* hidden_state_quantized;
TF_LITE_ENSURE_OK(
context, GetTemporarySafe(context, node, 1, &hidden_state_quantized));
TfLiteTensor* scaling_factors;
TF_LITE_ENSURE_OK(context,
GetTemporarySafe(context, node, 2, &scaling_factors));
TfLiteTensor* accum_scratch;
TF_LITE_ENSURE_OK(context,
GetTemporarySafe(context, node, 3, &accum_scratch));
TfLiteTensor* zero_points;
TF_LITE_ENSURE_OK(context,
GetTemporarySafe(context, node, 4, &zero_points));
TfLiteTensor* row_sums;
TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 5, &row_sums));
return EvalHybrid(input, input_weights, recurrent_weights, bias, params,
input_quantized, hidden_state_quantized,
scaling_factors, hidden_state, output, zero_points,
accum_scratch, row_sums, &op_data->compute_row_sums);
}
default:
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
TfLiteTypeGetName(input_weights->type));
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace rnn
TfLiteRegistration* Register_RNN() {
static TfLiteRegistration r = {rnn::Init, rnn::Free, rnn::Prepare, rnn::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite