- Allow unsigned types in Bitcast legalization. It got restricted to unsigned when MLIR added unsigned types. - Restrict Cast op native legalization to non complex types. There is a fallback lowering for this op to cover that. Enabled relevant tests for these. PiperOrigin-RevId: 351540425 Change-Id: I74098ae6c0f12c69fe6768b08e961251cc668b24
1211 lines
46 KiB
Python
1211 lines
46 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for XLA JIT compiler."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import six
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import bitwise_ops
|
|
from tensorflow.python.ops import gen_nn_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import nn_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
def nhwc_to_format(x, data_format):
|
|
"""Converts a numpy array from NHWC format to `data_format`."""
|
|
rank = len(x.shape)
|
|
if data_format == "NCHW":
|
|
return np.transpose(x, [0, rank - 1] + list(range(1, rank - 1)))
|
|
elif data_format == "NHWC":
|
|
return x
|
|
else:
|
|
raise ValueError("Unknown format {}".format(data_format))
|
|
|
|
|
|
class UnaryOpsTest(xla_test.XLATestCase):
|
|
"""Test cases for unary operators."""
|
|
|
|
def _assertOpOutputMatchesExpected(self,
|
|
op,
|
|
inp,
|
|
expected,
|
|
equality_test=None,
|
|
rtol=1e-3,
|
|
atol=1e-5):
|
|
"""Verifies that 'op' produces 'expected' when fed input 'inp' .
|
|
|
|
Args:
|
|
op: operator to test
|
|
inp: numpy input array to use as input to 'op'.
|
|
expected: numpy array representing the expected output of 'op'.
|
|
equality_test: either None, or a function that tests two numpy arrays for
|
|
equality. If None, self.assertAllClose is used.
|
|
rtol: relative tolerance for equality test.
|
|
atol: absolute tolerance for equality test.
|
|
"""
|
|
with self.session() as session:
|
|
with self.test_scope():
|
|
pinp = array_ops.placeholder(
|
|
dtypes.as_dtype(inp.dtype), inp.shape, name="a")
|
|
output = op(pinp)
|
|
result = session.run(output, {pinp: inp})
|
|
if equality_test is None:
|
|
self.assertEqual(output.dtype, expected.dtype)
|
|
self.assertAllCloseAccordingToType(
|
|
expected, result, rtol=rtol, atol=atol, bfloat16_rtol=0.03)
|
|
else:
|
|
equality_test(result, expected, rtol=rtol, atol=atol)
|
|
|
|
def ListsAreClose(self, result, expected, rtol, atol):
|
|
"""Tests closeness of two lists of floats."""
|
|
self.assertEqual(len(result), len(expected))
|
|
for i in xrange(len(result)):
|
|
self.assertAllClose(result[i], expected[i], rtol, atol)
|
|
|
|
def AssertCloseAndSorted(self, result, expected, rtol, atol):
|
|
"""Tests that result and expeted are both close and sorted."""
|
|
self.assertAllClose(result, expected, rtol, atol)
|
|
self.assertAllEqual(np.sort(result), result)
|
|
|
|
def AssertAllEqual(self, result, expected, rtol, atol):
|
|
"""Tests that result and expeted are exactly equal."""
|
|
self.assertAllEqual(result, expected)
|
|
|
|
@test_util.disable_mlir_bridge(
|
|
"Handle complex element type in DiagPart lowering")
|
|
def testAllTypeOps(self):
|
|
for dtype in self.numeric_types - {np.int8, np.uint8}:
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.diag, np.array([1, 2, 3, 4], dtype=dtype),
|
|
np.array(
|
|
[[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]],
|
|
dtype=dtype))
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.diag_part,
|
|
np.arange(36).reshape([2, 3, 2, 3]).astype(dtype),
|
|
np.array([[0, 7, 14], [21, 28, 35]], dtype=dtype))
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.diag, np.array([[1, 2], [3, 4]], dtype=dtype),
|
|
np.array(
|
|
[[[[1, 0], [0, 0]], [[0, 2], [0, 0]]], [[[0, 0], [3, 0]],
|
|
[[0, 0], [0, 4]]]],
|
|
dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.identity,
|
|
np.array([[-1, 1]], dtype=dtype),
|
|
expected=np.array([[-1, 1]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.prevent_gradient,
|
|
np.array([[-1, 1]], dtype=dtype),
|
|
expected=np.array([[-1, 1]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.squeeze,
|
|
np.array([[[[[]]]]], dtype=dtype),
|
|
expected=np.array([], dtype=dtype))
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.squeeze,
|
|
np.array([[[1], [2]]], dtype=dtype),
|
|
expected=np.array([1, 2], dtype=dtype))
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.squeeze,
|
|
np.array([[[1]], [[2]]], dtype=dtype),
|
|
expected=np.array([1, 2], dtype=dtype))
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.squeeze,
|
|
np.array([[[1, 2], [3, 4]]], dtype=dtype),
|
|
expected=np.array([[1, 2], [3, 4]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.stop_gradient,
|
|
np.array([[-1, 1]], dtype=dtype),
|
|
expected=np.array([[-1, 1]], dtype=dtype))
|
|
|
|
def testLog(self):
|
|
for dtype in self.float_types - {dtypes.bfloat16.as_numpy_dtype}:
|
|
tol = 1e-4 if dtype == np.float32 else 1e-9
|
|
x = np.linspace(-np.e, np.e, num=1000, dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.log, x, expected=np.log(x), atol=tol, rtol=tol)
|
|
|
|
x = np.linspace(0., np.e * 1e-30, num=1000, dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.log, x, expected=np.log(x), atol=tol, rtol=tol)
|
|
|
|
x = np.linspace(0., np.pi * 1e30, num=1000, dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.log, x, expected=np.log(x), atol=tol, rtol=tol)
|
|
|
|
def testSin(self):
|
|
for dtype in self.float_types - {dtypes.bfloat16.as_numpy_dtype}:
|
|
tol = 1e-6 if dtype == np.float32 else 1e-12
|
|
|
|
x = np.linspace(-4 * np.e, 4 * np.e, num=1000, dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sin, x, expected=np.sin(x), rtol=tol, atol=tol)
|
|
|
|
x = np.linspace(0., np.e * 1e-30, num=1000, dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sin, x, expected=np.sin(x), rtol=tol, atol=tol)
|
|
|
|
if dtype == np.float64:
|
|
x = np.linspace(0., np.e * 1e8, num=1000, dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sin, x, expected=np.sin(x), rtol=tol, atol=1e-5)
|
|
|
|
def testCos(self):
|
|
for dtype in self.float_types - {dtypes.bfloat16.as_numpy_dtype}:
|
|
tol = 1e-6 if dtype == np.float32 else 1e-12
|
|
|
|
x = np.linspace(-4 * np.e, 4 * np.e, num=1000, dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.cos, x, expected=np.cos(x), rtol=tol, atol=tol)
|
|
|
|
x = np.linspace(0., np.e * 1e-30, num=1000, dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.cos, x, expected=np.cos(x), rtol=tol, atol=tol)
|
|
|
|
if dtype == np.float64:
|
|
x = np.linspace(0., np.e * 1e8, num=1000, dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.cos, x, expected=np.cos(x), rtol=tol, atol=1e-5)
|
|
|
|
def testFloatOps(self):
|
|
for dtype in self.float_types:
|
|
x = np.arange(-0.90, 0.90, 0.25)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.acos, x.astype(dtype), expected=np.arccos(x).astype(dtype))
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.asin, x.astype(dtype), expected=np.arcsin(x).astype(dtype))
|
|
x = np.arange(-3, 3).reshape(1, 3, 2)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.atan, x.astype(dtype), expected=np.arctan(x).astype(dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.acosh,
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
expected=np.array(
|
|
[0, 1.3169579, 1.76274717, 2.06343707], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.asinh,
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
expected=np.array(
|
|
[0.88137359, 1.44363548, 1.81844646, 2.09471255], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.atanh,
|
|
np.array([0.1, 0.2, 0.3, 0.4], dtype=dtype),
|
|
expected=np.array(
|
|
[0.10033535, 0.20273255, 0.3095196, 0.42364893], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.ceil,
|
|
np.array([[-1.7, 1.2]], dtype=dtype),
|
|
expected=np.array([[-1, 2]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.cosh,
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
expected=np.array(
|
|
[1.54308063, 3.76219569, 10.067662, 27.30823284], dtype=dtype))
|
|
|
|
# Disable float16 testing for now
|
|
if dtype != np.float16:
|
|
x = np.arange(-10, 10, 1).astype(dtype)
|
|
with self.session() as session:
|
|
erf_x = session.run(math_ops.erf(x))
|
|
erfc_x = session.run(math_ops.erfc(x))
|
|
|
|
self._assertOpOutputMatchesExpected(math_ops.erf, x, expected=erf_x)
|
|
self._assertOpOutputMatchesExpected(math_ops.erfc, x, expected=erfc_x)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.exp,
|
|
np.array([[-1, 1]], dtype=dtype),
|
|
expected=np.array([[0.36787945, 2.7182817]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.expm1,
|
|
np.array([[-1, 1]], dtype=dtype),
|
|
expected=np.array([[-0.63212056, 1.71828183]], dtype=dtype),
|
|
rtol=1e-5)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.floor,
|
|
np.array([[-1.7, 1.2]], dtype=dtype),
|
|
expected=np.array([[-2, 1]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.is_finite,
|
|
np.array(
|
|
[[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]], dtype=dtype),
|
|
expected=np.array([[0, 1, 1, 1, 1, 1, 1, 0, 0]], dtype=np.bool))
|
|
|
|
# Tests for tf.nn ops.
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.l2_loss, np.array([[[]]], dtype=dtype), expected=dtype(0))
|
|
|
|
self._assertOpOutputMatchesExpected(nn_ops.l2_loss, dtype(4), dtype(8))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.l2_loss, np.array([[-2, 4]], dtype=dtype), expected=dtype(10))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.reciprocal,
|
|
np.array([[1, 2]], dtype=dtype),
|
|
expected=np.array([[1, 0.5]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.log,
|
|
np.array([[1, 2]], dtype=dtype),
|
|
expected=np.array([[0, 0.69314718]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sin,
|
|
np.array([[1, 2]], dtype=dtype),
|
|
expected=np.array([[0.841478, 0.909302]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.cos,
|
|
np.array([[1, 2]], dtype=dtype),
|
|
expected=np.array([[0.540297, -0.41614]], dtype=dtype))
|
|
|
|
# Confirm that log1p will remain precise across a range of small values.
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.log1p,
|
|
np.array([[1e-14, 1e-15, 0.6, 2] + [x * 1e-5 for x in range(1, 20)]],
|
|
dtype=dtype),
|
|
expected=np.log1p(
|
|
np.array(
|
|
[[1e-14, 1e-15, 0.6, 2] + [x * 1e-5 for x in range(1, 20)]],
|
|
dtype=dtype)).astype(dtype),
|
|
rtol=1e-15 if dtype == np.float64 else 1e-4,
|
|
atol=1e-15 if dtype == np.float64 else 1e-4)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.rint,
|
|
np.array(
|
|
[[-1.7, 1.2, 4.0, 0.0], [-3.5, -2.5, -1.5, -0.5],
|
|
[0.5, 1.5, 2.5, 3.5]],
|
|
dtype=dtype),
|
|
expected=np.array(
|
|
[[-2, 1, 4, 0], [-4, -2, -2, 0], [0, 2, 2, 4]], dtype=dtype))
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.round,
|
|
np.array(
|
|
[[-1.7, 1.2, 4.0, 0.0], [-3.5, -2.5, -1.5, -0.5],
|
|
[0.5, 1.5, 2.5, 3.5]],
|
|
dtype=dtype),
|
|
expected=np.array(
|
|
[[-2, 1, 4, 0], [-4, -2, -2, 0], [0, 2, 2, 4]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.rsqrt,
|
|
np.array([[4, 16]], dtype=dtype),
|
|
expected=np.array([[0.5, 0.25]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sigmoid,
|
|
np.array([[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype),
|
|
expected=np.array(
|
|
[[0.7310586, 0.7310586, 0.7310586, 0.7310586],
|
|
[0.7310586, 0.880797, 0.95257413, 0.98201376]],
|
|
dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sigmoid,
|
|
np.array([-300, -150, 0, 150, 300], dtype=dtype),
|
|
expected=np.array([0, 0, 0.5, 1, 1], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sinh,
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
expected=np.array(
|
|
[1.17520119, 3.62686041, 10.01787493, 27.2899172], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sqrt,
|
|
np.array([[4, 9]], dtype=dtype),
|
|
expected=np.array([[2, 3]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.tan,
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
expected=np.array(
|
|
[1.55740772, -2.18503986, -0.14254654, 1.15782128], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.tanh,
|
|
np.array([[1, 2, 3, 4], [np.inf, -np.inf, np.nan, 20],
|
|
[19, -19, 22, -22]],
|
|
dtype=dtype),
|
|
expected=np.array(
|
|
[[0.76159418, 0.96402758, 0.99505478, 0.99932933],
|
|
[1.0, -1.0, np.nan, 1.0], [1.0, -1.0, 1.0, -1.0]],
|
|
dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.log_softmax,
|
|
np.array([[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype),
|
|
expected=np.array(
|
|
[[-1.3862944, -1.3862944, -1.3862944, -1.3862944],
|
|
[-3.4401896, -2.4401896, -1.4401897, -0.44018969]],
|
|
dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.elu,
|
|
np.array([[-1, 0, 1, -1e-6]], dtype=dtype),
|
|
expected=np.array([[-0.63212056, 0, 1, -9.999995e-07]], dtype=dtype),
|
|
rtol=1e-5,
|
|
atol=1e-6)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.selu,
|
|
np.array([[-1, 0, 1, -1e-5]], dtype=dtype),
|
|
expected=np.array(
|
|
[[-1.11133074, 0., 1.05070099, -1.758090550379974e-05]],
|
|
dtype=dtype),
|
|
rtol=1e-5,
|
|
atol=1e-6)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.relu,
|
|
np.array([[-1, 1]], dtype=dtype),
|
|
expected=np.array([[0, 1]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.relu6,
|
|
np.array([[-0.05, 6.05, 5]], dtype=dtype),
|
|
expected=np.array([[0, 6, 5]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.leaky_relu,
|
|
np.array([[-2, -1, 0, 1, 2]], dtype=dtype),
|
|
expected=np.array([[-0.4, -0.2, 0.0, 1.0, 2.0]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.softmax,
|
|
np.array([1, 2, 3, 4], dtype=dtype),
|
|
expected=np.array([0.032058604, 0.087144323, 0.23688284, 0.64391428],
|
|
dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.softmax,
|
|
np.array([[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype),
|
|
expected=np.array(
|
|
[[0.25, 0.25, 0.25, 0.25],
|
|
[0.032058604, 0.087144323, 0.23688284, 0.64391428]],
|
|
dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.softmax,
|
|
np.array([[[1, 1], [1, 1]], [[1, 2], [3, 4]]], dtype=dtype),
|
|
expected=np.array(
|
|
[[[0.5, 0.5], [0.5, 0.5]],
|
|
[[0.26894142, 0.73105858], [0.26894142, 0.73105858]]],
|
|
dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.softsign,
|
|
np.array([[-2, -1, 0, 1, 2]], dtype=dtype),
|
|
expected=np.array(
|
|
[[-0.66666669, -0.5, 0, 0.5, 0.66666669]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sign,
|
|
np.array([[-2.0, -1.0, -0.0, +0.0, 1.0, 2.0,
|
|
float("nan")]],
|
|
dtype=dtype),
|
|
expected=np.array([[-1.0, -1.0, -0.0, +0.0, 1.0, 1.0,
|
|
float("nan")]],
|
|
dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.is_finite,
|
|
np.array(
|
|
[[42, float("inf"), -123], [float("nan"), 0, -0.0]], dtype=dtype),
|
|
expected=np.array(
|
|
[[True, False, True], [False, True, True]], dtype=np.bool))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.lgamma,
|
|
np.array(0.5, dtype=dtype),
|
|
expected=np.array(np.log(np.pi) / 2, dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.lgamma,
|
|
np.array(
|
|
[[1, 2, 3], [4, 5, 6], [1 / 2, 3 / 2, 5 / 2],
|
|
[-3 / 2, -7 / 2, -11 / 2]],
|
|
dtype=dtype),
|
|
expected=np.array(
|
|
[
|
|
[0, 0, np.log(2.0)],
|
|
[np.log(6.0), np.log(24.0),
|
|
np.log(120)],
|
|
[
|
|
np.log(np.pi) / 2,
|
|
np.log(np.pi) / 2 - np.log(2),
|
|
np.log(np.pi) / 2 - np.log(4) + np.log(3)
|
|
],
|
|
[
|
|
np.log(np.pi) / 2 - np.log(3) + np.log(4),
|
|
np.log(np.pi) / 2 - np.log(105) + np.log(16),
|
|
np.log(np.pi) / 2 - np.log(10395) + np.log(64),
|
|
],
|
|
],
|
|
dtype=dtype))
|
|
|
|
# The actual result is complex. Take the real part.
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.lgamma,
|
|
np.array([-1 / 2, -5 / 2, -9 / 2], dtype=dtype),
|
|
expected=np.array(
|
|
[
|
|
np.log(np.pi) / 2 + np.log(2),
|
|
np.log(np.pi) / 2 - np.log(15) + np.log(8),
|
|
np.log(np.pi) / 2 - np.log(945) + np.log(32),
|
|
],
|
|
dtype=dtype),
|
|
atol=1e-4)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.digamma,
|
|
np.array(
|
|
[[1.0, 0.5, 1 / 3.0], [0.25, 1 / 6.0, 0.125], [2.0, 3.0, 4.0],
|
|
[6.0, 8.0, 9.0]],
|
|
dtype=dtype),
|
|
expected=np.array(
|
|
[
|
|
[
|
|
-np.euler_gamma, -2 * np.log(2) - np.euler_gamma,
|
|
-np.pi / 2 / np.sqrt(3) - 3 * np.log(3) / 2 -
|
|
np.euler_gamma
|
|
],
|
|
[
|
|
-np.pi / 2 - 3 * np.log(2) - np.euler_gamma,
|
|
-np.pi * np.sqrt(3) / 2 - 2 * np.log(2) -
|
|
3 * np.log(3) / 2 - np.euler_gamma,
|
|
-np.pi / 2 - 4 * np.log(2) -
|
|
(np.pi + np.log(2 + np.sqrt(2)) - np.log(2 - np.sqrt(2)))
|
|
/ np.sqrt(2) - np.euler_gamma
|
|
],
|
|
[
|
|
1 - np.euler_gamma, 1.5 - np.euler_gamma,
|
|
11 / 6.0 - np.euler_gamma
|
|
],
|
|
[
|
|
137 / 60.0 - np.euler_gamma, 363 / 140.0 - np.euler_gamma,
|
|
761 / 280.0 - np.euler_gamma
|
|
],
|
|
],
|
|
dtype=dtype))
|
|
|
|
@test_util.disable_mlir_bridge(
|
|
"TODO(b/155501444): Handle _UnaryOpsComposition ops from Grappler")
|
|
def testFloatOpsDisabledOnMlirBridge(self):
|
|
for dtype in self.float_types:
|
|
if dtype != np.float16:
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x: math_ops.sigmoid(x) / math_ops.log1p(math_ops.exp(x)),
|
|
np.array([-40, 40], dtype=dtype),
|
|
expected=np.array([1.0, 0.025], dtype=dtype))
|
|
|
|
def testQuantizeAndDequantize(self):
|
|
for dtype in self.float_types:
|
|
|
|
def quantize_and_dequantize_v2(x):
|
|
return array_ops.quantize_and_dequantize(
|
|
x, -127, 127, signed_input=True, num_bits=8)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
quantize_and_dequantize_v2,
|
|
np.array([-1, -0.5, 0, 0.3], dtype=dtype),
|
|
expected=np.array([-1., -0.5, 0., 0.296875], dtype=dtype))
|
|
|
|
def quantize_and_dequantize_v2_round_half_up(x):
|
|
return array_ops.quantize_and_dequantize(
|
|
x,
|
|
-1,
|
|
1.0,
|
|
signed_input=True,
|
|
num_bits=8,
|
|
range_given=True,
|
|
round_mode="HALF_UP")
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
quantize_and_dequantize_v2_round_half_up,
|
|
np.array([-0.8, -0.5, 0, 0.3, 0.8, -2, 33], dtype=dtype),
|
|
expected=np.array([
|
|
-102.0 / 127,
|
|
-63.0 / 127,
|
|
0,
|
|
38.0 / 127,
|
|
102.0 / 127,
|
|
-128.0 / 127,
|
|
1,
|
|
],
|
|
dtype=dtype))
|
|
|
|
def quantize_and_dequantize_v2_round_half_to_even(x):
|
|
return array_ops.quantize_and_dequantize(
|
|
x,
|
|
-1.0,
|
|
1.0,
|
|
signed_input=True,
|
|
num_bits=8,
|
|
range_given=True,
|
|
round_mode="HALF_TO_EVEN")
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
quantize_and_dequantize_v2_round_half_to_even,
|
|
np.array(
|
|
[
|
|
-0.8,
|
|
# The -0.5 should become -63.5 after scaling and with
|
|
# rounding this should become -64. But with the test
|
|
# unary_ops_test_cpu_ondemand, this fails as the result
|
|
# before scaling becomes -63.499996 and gets rounded to -63.
|
|
# TODO(sreenik): Some one more familiar with this test needs
|
|
# to take a look and resolve this. This works on all other
|
|
# variations of the platform like cpu, and gpu.
|
|
# -0.5,
|
|
0,
|
|
0.3,
|
|
0.8,
|
|
-2,
|
|
33
|
|
],
|
|
dtype=dtype),
|
|
expected=np.array(
|
|
[
|
|
-102.0 / 127,
|
|
# -64.0 / 127,
|
|
0,
|
|
38.0 / 127,
|
|
102.0 / 127,
|
|
-128.0 / 127,
|
|
1,
|
|
],
|
|
dtype=dtype))
|
|
|
|
def quantize_and_dequantize_v3(x):
|
|
return array_ops.quantize_and_dequantize_v3(
|
|
x, -127, 127, num_bits=8, signed_input=True, range_given=False)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
quantize_and_dequantize_v3,
|
|
np.array([-1, -0.5, 0, 0.3], dtype=dtype),
|
|
expected=np.array([-1., -0.5, 0., 0.296875], dtype=dtype))
|
|
|
|
def testComplexOps(self):
|
|
for dtype in self.complex_types:
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.acosh,
|
|
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype),
|
|
expected=np.arccosh(
|
|
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.asinh,
|
|
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype),
|
|
expected=np.arcsinh(
|
|
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.atanh,
|
|
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype),
|
|
expected=np.arctanh(
|
|
np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.cosh,
|
|
np.array([1j, 2 - 3j, 3, 4 + 2j], dtype=dtype),
|
|
expected=np.cosh(np.array([1j, 2 - 3j, 3, 4 + 2j], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sinh,
|
|
np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype),
|
|
expected=np.sinh(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.exp,
|
|
np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype),
|
|
expected=np.exp(np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.expm1,
|
|
np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype),
|
|
expected=np.expm1(np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype)),
|
|
rtol=1e-6,
|
|
atol=1e-6)
|
|
|
|
# For real part close to zero, or imaginary part close to a multiple of
|
|
# pi.
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.expm1,
|
|
np.array([[1e-11 + 1j, -1e-11 - 1j, 1. + 1e-11j,
|
|
-1. - 1e-11j, 1e-13j + 1e-13j]], dtype=dtype),
|
|
# TODO(srvasude): Use numpy as the source of truth after we depend on
|
|
# latest numpy with this pull request:
|
|
# https://github.com/numpy/numpy/pull/15110.
|
|
# The numbers below were generated by scipy.special.expm1.
|
|
expected=np.array([[
|
|
-4.59697694e-01+8.41470985e-01j,
|
|
-4.59697694e-01-8.41470985e-01j,
|
|
1.71828183e+00+2.71828183e-11j,
|
|
-6.32120559e-01-3.67879441e-12j,
|
|
-2.00000000e-26+2.00000000e-13j]], dtype=dtype),
|
|
rtol=1e-09,
|
|
atol=1e-20)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.reciprocal,
|
|
np.array([[1, 2j, 2 + 3j]], dtype=dtype),
|
|
expected=1.0 / np.array([[1, 2j, 2 + 3j]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.log,
|
|
np.array([[5j, 3 - 2j]], dtype=dtype),
|
|
expected=np.log(np.array([[5j, 3 - 2j]], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sin,
|
|
np.array([[5j, 3 - 2j]], dtype=dtype),
|
|
expected=np.sin(np.array([[5j, 3 - 2j]], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.cos,
|
|
np.array([[5j, 3 - 2j]], dtype=dtype),
|
|
expected=np.cos(np.array([[5j, 3 - 2j]], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.log1p,
|
|
np.array([[1e-14, 1e-15j, 0.6 - 0.3j]], dtype=dtype),
|
|
expected=np.log1p(
|
|
np.array([[1e-14, 1e-15j, 0.6 - 0.3j]], dtype=dtype)),
|
|
rtol=1e-4,
|
|
atol=1e-6)
|
|
|
|
val = np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.rsqrt, val, expected=1 / np.sqrt(val))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sigmoid, val, expected=1 / (1 + np.exp(-val)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sqrt, val, expected=np.sqrt(val))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.tanh,
|
|
np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype),
|
|
expected=np.tanh(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.tan,
|
|
np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype),
|
|
expected=np.tan(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype)))
|
|
|
|
ctypes = {np.complex64: np.float32, np.complex128: np.float64}
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.abs,
|
|
np.array([[3 - 4j, -1j, np.inf]], dtype=dtype),
|
|
expected=np.array([[5, 1, np.inf]], dtype=ctypes[dtype]))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.negative,
|
|
np.array([[-1 + 2j, -3j]], dtype=dtype),
|
|
expected=np.array([[1 - 2j, 3j]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.square,
|
|
np.array([[-2 - 3j, 3 + 4j, 5j]], dtype=dtype),
|
|
expected=np.array([[-2 - 3j, 3 + 4j, 5j]], dtype=dtype)**2)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.zeros_like,
|
|
np.array([[4j, 3 - 2j], [2, -1j]], dtype=dtype),
|
|
expected=np.array([[0, 0], [0, 0]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.ones_like,
|
|
np.array([[-4j, 3 + 2j], [2, -1j]], dtype=dtype),
|
|
expected=np.array([[1, 1], [1, 1]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.angle,
|
|
np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype),
|
|
expected=np.angle(np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype)))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.conj,
|
|
np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype),
|
|
expected=np.array([1 - 3j, -4 - 7j, 2.7, 3j], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.imag,
|
|
np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype),
|
|
expected=np.array([3, 7, 0, -3], dtype=ctypes[dtype]))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.real,
|
|
np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype),
|
|
expected=np.array([1, -4, 2.7, 0], dtype=ctypes[dtype]))
|
|
|
|
def testIntOps(self):
|
|
for dtype in self.int_types:
|
|
self._assertOpOutputMatchesExpected(
|
|
bitwise_ops.invert,
|
|
np.array([0, -1, 1, 16, 42], dtype=dtype),
|
|
expected=np.array([-1, 0, -2, -17, -43], dtype=dtype))
|
|
|
|
# Test population_count for array inputs.
|
|
raw_inputs = [
|
|
0, 1, -1, 3, -3, 5, -5, 14, -14, 127, 128, 255, 256, 65535, 65536,
|
|
2**31 - 1, 2**31, 2**32 - 1, 2**32, -2**32 + 1, -2**32, -2**63 + 1,
|
|
2**63 - 1
|
|
]
|
|
# Only choose inputs which fit in the int dtype.
|
|
raw_inputs = list(
|
|
filter(lambda x: np.iinfo(dtype).min <= x <= np.iinfo(dtype).max,
|
|
raw_inputs))
|
|
inputs = np.array(raw_inputs, dtype=dtype)
|
|
|
|
def count_bits(x):
|
|
return sum(bin(z).count("1") for z in six.iterbytes(x.tobytes()))
|
|
|
|
truth = [count_bits(x) for x in inputs]
|
|
self._assertOpOutputMatchesExpected(
|
|
bitwise_ops.population_count,
|
|
inputs,
|
|
expected=np.array(truth, dtype=np.uint8),
|
|
equality_test=self.AssertAllEqual)
|
|
|
|
# Test population_count for scalar inputs.
|
|
for raw_inp in raw_inputs:
|
|
inp = dtype(raw_inp)
|
|
truth = count_bits(inp)
|
|
self._assertOpOutputMatchesExpected(
|
|
bitwise_ops.population_count,
|
|
inp,
|
|
expected=np.uint8(truth),
|
|
equality_test=self.AssertAllEqual)
|
|
|
|
def testNumericOps(self):
|
|
for dtype in self.numeric_types - {np.int8, np.uint8}:
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.abs,
|
|
np.array([[2, -1]], dtype=dtype),
|
|
expected=np.array([[2, 1]], dtype=np.real(dtype(0)).dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.negative,
|
|
np.array([[-1, 1]], dtype=dtype),
|
|
expected=np.array([[1, -1]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.square,
|
|
np.array([[-2, 3]], dtype=dtype),
|
|
expected=np.array([[4, 9]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.zeros_like,
|
|
np.array([[4, 3], [2, 1]], dtype=dtype),
|
|
expected=np.array([[0, 0], [0, 0]], dtype=dtype))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.ones_like,
|
|
np.array([[4, 3], [2, 1]], dtype=dtype),
|
|
expected=np.array([[1, 1], [1, 1]], dtype=dtype))
|
|
|
|
# TODO(phawkins): these tests fail unless fastmath optimizations
|
|
# are disabled. Use more robust IsInf/IsNaN detection and enable these
|
|
# tests.
|
|
@unittest.skip("test case fails in fast-math mode")
|
|
def testIsInfAndIsNan(self):
|
|
for dtype in self.float_types:
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.is_inf,
|
|
np.array(
|
|
[[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]], dtype=dtype),
|
|
expected=np.array([[1, 0, 0, 0, 0, 0, 0, 1, 0]], dtype=np.bool))
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.is_nan,
|
|
np.array(
|
|
[[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]], dtype=dtype),
|
|
expected=np.array([[0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=np.bool))
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.sign,
|
|
np.array([[np.nan]], dtype=dtype),
|
|
expected=np.array([[0.0]], dtype=dtype))
|
|
|
|
def testLogicalOps(self):
|
|
self._assertOpOutputMatchesExpected(
|
|
math_ops.logical_not,
|
|
np.array([[True, False], [False, True]], dtype=np.bool),
|
|
expected=np.array([[False, True], [True, False]], dtype=np.bool))
|
|
|
|
def testBiasAddGrad(self):
|
|
self._assertOpOutputMatchesExpected(
|
|
gen_nn_ops.bias_add_grad,
|
|
np.array([[1., 2.], [3., 4.]], dtype=np.float32),
|
|
expected=np.array([4., 6.], dtype=np.float32))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x: gen_nn_ops.bias_add_grad(x, data_format="NCHW"),
|
|
np.array(
|
|
[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]], dtype=np.float32),
|
|
expected=np.array([14., 22.], dtype=np.float32))
|
|
|
|
def testCast(self):
|
|
shapes = [[], [4], [2, 3], [2, 0, 4]]
|
|
types = {
|
|
dtypes.bool, dtypes.float32, dtypes.float64, dtypes.complex64,
|
|
dtypes.int32, dtypes.int64, dtypes.uint32, dtypes.uint64
|
|
}
|
|
for src_type in types:
|
|
for dst_type in types:
|
|
src_np_dtype = src_type.as_numpy_dtype
|
|
dst_np_dtype = dst_type.as_numpy_dtype
|
|
|
|
for shape in shapes:
|
|
src = np.arange(np.prod(shape)).astype(src_np_dtype)
|
|
|
|
if src_type in self.complex_tf_types:
|
|
src += (np.arange(np.prod(shape)) * 2j).astype(src_np_dtype)
|
|
src = src.reshape(shape)
|
|
dst = src.astype(dst_np_dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x, dst_type=dst_type: math_ops.cast(x, dst_type),
|
|
src,
|
|
expected=dst)
|
|
|
|
# Check special values.
|
|
if src_type.is_integer:
|
|
imin = np.iinfo(src_np_dtype).min
|
|
imax = np.iinfo(src_np_dtype).max
|
|
src = np.array([imin, imax, 0, 1, -1], dtype=src_np_dtype)
|
|
elif src_type in self.float_tf_types:
|
|
if dst_type.is_integer:
|
|
imin = np.iinfo(dst_np_dtype).min
|
|
imax = np.iinfo(dst_np_dtype).max // 2
|
|
src = np.array([imin, imax, 0, 1], dtype=src_np_dtype)
|
|
elif dst_type in self.float_tf_types:
|
|
fmin = np.finfo(dst_np_dtype).min
|
|
fmax = np.finfo(dst_np_dtype).max
|
|
tiny = np.finfo(dst_np_dtype).tiny
|
|
eps = np.finfo(dst_np_dtype).eps
|
|
src = np.array(
|
|
[fmin, fmax, np.nan, eps, -eps, tiny, -tiny, np.inf, -np.inf],
|
|
dtype=src_np_dtype)
|
|
dst = src.astype(dst_np_dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x, dst_type=dst_type: math_ops.cast(x, dst_type),
|
|
src,
|
|
expected=dst)
|
|
|
|
def testBitcast(self):
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x: array_ops.bitcast(x, dtypes.int32),
|
|
np.array([1, 0x3f800000], np.int32),
|
|
expected=np.array([1, 0x3f800000], np.int32))
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x: array_ops.bitcast(x, dtypes.float32),
|
|
np.array([1, 0x3f800000], np.int32),
|
|
expected=np.array([1e-45, 1.0], np.float32))
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x: array_ops.bitcast(x, dtypes.int32),
|
|
np.array([1e-45, 1.0], np.float32),
|
|
expected=np.array([1, 0x3f800000], np.int32))
|
|
if np.int64 in self.numeric_types:
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x: array_ops.bitcast(x, dtypes.int64),
|
|
np.array([1, 0x100000003f800000], np.uint64),
|
|
expected=np.array([1, 0x100000003f800000], np.int64))
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x: array_ops.bitcast(x, dtypes.uint64),
|
|
np.array([1, 0x100000003f800000], np.int64),
|
|
expected=np.array([1, 0x100000003f800000], np.uint64))
|
|
|
|
def testInvertPermutation(self):
|
|
for np_dtype in [np.int32, np.int64]:
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.invert_permutation,
|
|
np.array([1, 2, 0], np_dtype),
|
|
expected=np.array([2, 0, 1], dtype=np_dtype))
|
|
|
|
def testInvertPermutationTwiceIsNoop(self):
|
|
|
|
def invert_twice(x):
|
|
return array_ops.invert_permutation(array_ops.invert_permutation(x))
|
|
|
|
for np_dtype in [np.int32, np.int64]:
|
|
self._assertOpOutputMatchesExpected(
|
|
invert_twice,
|
|
np.array([1, 2, 0], np_dtype),
|
|
expected=np.array([1, 2, 0], dtype=np_dtype))
|
|
|
|
def testRank(self):
|
|
rank_op = lambda x: array_ops.rank_internal(x, optimize=False)
|
|
for dtype in self.numeric_types:
|
|
self._assertOpOutputMatchesExpected(
|
|
rank_op, dtype(7), expected=np.int32(0))
|
|
self._assertOpOutputMatchesExpected(
|
|
rank_op, np.array([[], []], dtype=dtype), expected=np.int32(2))
|
|
self._assertOpOutputMatchesExpected(
|
|
rank_op, np.array([-1, 1], dtype=dtype), expected=np.int32(1))
|
|
self._assertOpOutputMatchesExpected(
|
|
rank_op, np.array([[-1, 1]], dtype=dtype), expected=np.int32(2))
|
|
self._assertOpOutputMatchesExpected(
|
|
rank_op,
|
|
np.array([[-1], [1], [4]], dtype=dtype),
|
|
expected=np.int32(2))
|
|
|
|
def testShape(self):
|
|
shape_op = lambda x: array_ops.shape_internal(x, optimize=False)
|
|
for dtype in self.numeric_types:
|
|
self._assertOpOutputMatchesExpected(
|
|
shape_op, dtype(7), expected=np.array([], dtype=np.int32))
|
|
self._assertOpOutputMatchesExpected(
|
|
shape_op,
|
|
np.array([[], []], dtype=dtype),
|
|
expected=np.array([2, 0], dtype=np.int32))
|
|
self._assertOpOutputMatchesExpected(
|
|
shape_op,
|
|
np.array([-1, 1], dtype=dtype),
|
|
expected=np.array([2], dtype=np.int32))
|
|
self._assertOpOutputMatchesExpected(
|
|
shape_op,
|
|
np.array([[-1, 1]], dtype=dtype),
|
|
expected=np.array([1, 2], dtype=np.int32))
|
|
self._assertOpOutputMatchesExpected(
|
|
shape_op,
|
|
np.array([[-1], [1], [4]], dtype=dtype),
|
|
expected=np.array([3, 1], dtype=np.int32))
|
|
|
|
def testSize(self):
|
|
size_op = lambda x: array_ops.size_internal(x, optimize=False)
|
|
for dtype in self.numeric_types:
|
|
self._assertOpOutputMatchesExpected(
|
|
size_op, dtype(7), expected=np.int32(1))
|
|
self._assertOpOutputMatchesExpected(
|
|
size_op, np.array([[], []], dtype=dtype), expected=np.int32(0))
|
|
self._assertOpOutputMatchesExpected(
|
|
size_op, np.array([-1, 1], dtype=dtype), expected=np.int32(2))
|
|
self._assertOpOutputMatchesExpected(
|
|
size_op, np.array([[-1, 1]], dtype=dtype), expected=np.int32(2))
|
|
self._assertOpOutputMatchesExpected(
|
|
size_op,
|
|
np.array([[-1], [1], [4]], dtype=dtype),
|
|
expected=np.int32(3))
|
|
|
|
def testSizeWithInt64OutType(self):
|
|
|
|
def size_op(x):
|
|
return array_ops.size_internal(x, optimize=False, out_type=np.int64)
|
|
|
|
for dtype in self.numeric_types:
|
|
self._assertOpOutputMatchesExpected(
|
|
size_op,
|
|
np.array([[-1], [1], [4]], dtype=dtype),
|
|
expected=np.int64(3))
|
|
|
|
def testUnpack(self):
|
|
self._assertOpOutputMatchesExpected(
|
|
array_ops.unstack,
|
|
np.array([[1., 2.], [3., 4.], [5., 6.]], dtype=np.float32),
|
|
expected=[
|
|
np.array([1., 2.], dtype=np.float32),
|
|
np.array([3., 4.], dtype=np.float32),
|
|
np.array([5., 6.], dtype=np.float32),
|
|
],
|
|
equality_test=self.ListsAreClose)
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
lambda x: array_ops.unstack(x, axis=1),
|
|
np.array([[1., 2.], [3., 4.], [5., 6.]], dtype=np.float32),
|
|
expected=[
|
|
np.array([1., 3., 5.], dtype=np.float32),
|
|
np.array([2., 4., 6.], dtype=np.float32),
|
|
],
|
|
equality_test=self.ListsAreClose)
|
|
|
|
def testDepthToSpace(self):
|
|
|
|
def make_op(data_format):
|
|
|
|
def op(x):
|
|
return array_ops.depth_to_space(
|
|
x, block_size=2, data_format=data_format)
|
|
|
|
return op
|
|
|
|
for dtype in self.numeric_types:
|
|
for data_format in ["NCHW", "NHWC"]:
|
|
self._assertOpOutputMatchesExpected(
|
|
make_op(data_format),
|
|
nhwc_to_format(
|
|
np.array([[[[1, 2, 3, 4]]]], dtype=dtype), data_format),
|
|
expected=nhwc_to_format(
|
|
np.array([[[[1], [2]], [[3], [4]]]], dtype=dtype), data_format))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
make_op(data_format),
|
|
nhwc_to_format(
|
|
np.array(
|
|
[[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]], dtype=dtype),
|
|
data_format),
|
|
expected=nhwc_to_format(
|
|
np.array(
|
|
[[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]],
|
|
dtype=dtype), data_format))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
make_op(data_format),
|
|
nhwc_to_format(
|
|
np.array(
|
|
[[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12],
|
|
[13, 14, 15, 16]]]],
|
|
dtype=dtype), data_format),
|
|
expected=nhwc_to_format(
|
|
np.array(
|
|
[[[[1], [2], [5], [6]], [[3], [4], [7], [8]],
|
|
[[9], [10], [13], [14]], [[11], [12], [15], [16]]]],
|
|
dtype=dtype), data_format))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
make_op("NCHW_VECT_C"),
|
|
np.arange(32, dtype=dtype).reshape((1, 8, 1, 1, 4)),
|
|
expected=np.array([[[[[0, 1, 2, 3], [8, 9, 10, 11]],
|
|
[[16, 17, 18, 19], [24, 25, 26, 27]]],
|
|
[[[4, 5, 6, 7], [12, 13, 14, 15]],
|
|
[[20, 21, 22, 23], [28, 29, 30, 31]]]]],
|
|
dtype=dtype))
|
|
|
|
def testSpaceToDepth(self):
|
|
|
|
def make_op(data_format):
|
|
|
|
def op(x):
|
|
return array_ops.space_to_depth(
|
|
x, block_size=2, data_format=data_format)
|
|
|
|
return op
|
|
|
|
for dtype in self.numeric_types:
|
|
for data_format in ["NCHW", "NHWC"]:
|
|
self._assertOpOutputMatchesExpected(
|
|
make_op(data_format),
|
|
nhwc_to_format(
|
|
np.array([[[[1], [2]], [[3], [4]]]], dtype=dtype), data_format),
|
|
expected=nhwc_to_format(
|
|
np.array([[[[1, 2, 3, 4]]]], dtype=dtype), data_format))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
make_op(data_format),
|
|
nhwc_to_format(
|
|
np.array(
|
|
[[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]],
|
|
dtype=dtype), data_format),
|
|
expected=nhwc_to_format(
|
|
np.array(
|
|
[[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]], dtype=dtype),
|
|
data_format))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
make_op(data_format),
|
|
nhwc_to_format(
|
|
np.array(
|
|
[[[[1], [2], [5], [6]], [[3], [4], [7], [8]],
|
|
[[9], [10], [13], [14]], [[11], [12], [15], [16]]]],
|
|
dtype=dtype), data_format),
|
|
expected=nhwc_to_format(
|
|
np.array(
|
|
[[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12],
|
|
[13, 14, 15, 16]]]],
|
|
dtype=dtype), data_format))
|
|
|
|
self._assertOpOutputMatchesExpected(
|
|
make_op("NCHW_VECT_C"),
|
|
np.arange(32, dtype=dtype).reshape((1, 2, 2, 2, 4)),
|
|
expected=np.array(
|
|
[[[[[0, 1, 2, 3]]], [[[16, 17, 18, 19]]], [[[4, 5, 6, 7]]],
|
|
[[[20, 21, 22, 23]]], [[[8, 9, 10, 11]]], [[[24, 25, 26, 27]]],
|
|
[[[12, 13, 14, 15]]], [[[28, 29, 30, 31]]]]],
|
|
dtype=dtype))
|
|
|
|
def _assertSoftplusMatchesExpected(self,
|
|
features,
|
|
dtype,
|
|
equality_test=None,
|
|
rtol=1e-6,
|
|
atol=9.1e-6):
|
|
features = np.array(features, dtype=dtype)
|
|
zero = np.asarray(0).astype(dtype)
|
|
expected = np.logaddexp(zero, features).astype(dtype)
|
|
self._assertOpOutputMatchesExpected(
|
|
nn_ops.softplus,
|
|
features,
|
|
expected=expected,
|
|
equality_test=equality_test,
|
|
rtol=rtol,
|
|
atol=atol)
|
|
|
|
def testSoftplus(self):
|
|
for dtype in self.float_types & {dtypes.float32, dtypes.float64}:
|
|
self._assertSoftplusMatchesExpected([[-2, 0, 8]], dtype)
|
|
self._assertSoftplusMatchesExpected(
|
|
[[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]], dtype)
|
|
if dtype == dtypes.bfloat16.as_numpy_dtype:
|
|
log_eps = np.log(np.finfo(np.float32).eps)
|
|
else:
|
|
log_eps = np.log(np.finfo(dtype).eps)
|
|
one = dtype(1)
|
|
ten = dtype(10)
|
|
self._assertSoftplusMatchesExpected([
|
|
log_eps, log_eps - one, log_eps + one, log_eps - ten, log_eps + ten,
|
|
-log_eps, -log_eps - one, -log_eps + one, -log_eps - ten,
|
|
-log_eps + ten
|
|
], dtype)
|
|
|
|
self._assertSoftplusMatchesExpected(
|
|
[0.69302183, 0.69324386],
|
|
dtype,
|
|
equality_test=self.AssertCloseAndSorted,
|
|
rtol=9e-5,
|
|
atol=9e-5)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|