Currently, the op is executed on local device based on the device attribute but this is not intended and is causing recursive call in case of on-demand compilation of an op. The op will be executed on host CPU if we don't explicitly set device for the eager op and provide input tensors on the host CPU. Also, setting placement policy to TFE_DEVICE_PLACEMENT_EXPLICIT so that other devices are not used if no kernel is available on CPU. This will provide consistent behavior in different environments. I don't see any easy way to have unit test for this commit without having a custom binary with GPU device and using some op that has different behavior on CPU and GPU. We have end to end tests for this in compiler/tests directory. Removed an existing test that seems to be passing even if we don't force local device which was the original motivation for the change. PiperOrigin-RevId: 348246851 Change-Id: Ib96af863ba3b151bdbc296727c8b9e418ba2646e
233 lines
7.7 KiB
Python
233 lines
7.7 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Functional tests for scan ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import errors_impl
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
def numpy_reverse(x, axis):
|
|
length = len(x.shape)
|
|
if axis < 0:
|
|
axis = length + axis
|
|
|
|
ix = [
|
|
slice(None, None, -1) if i == axis else slice(None) for i in range(length)
|
|
]
|
|
return x[ix]
|
|
|
|
|
|
def handle_options(func, x, axis, exclusive, reverse):
|
|
"""Adds tf options to numpy scan ops."""
|
|
length = len(x.shape)
|
|
if axis < 0:
|
|
axis = length + axis
|
|
|
|
if reverse:
|
|
x = numpy_reverse(x, axis)
|
|
|
|
if exclusive:
|
|
ix_head = [slice(0, 1) if i == axis else slice(None) for i in range(length)]
|
|
ix_init = [
|
|
slice(0, -1) if i == axis else slice(None) for i in range(length)
|
|
]
|
|
if func == np.cumsum:
|
|
init = np.zeros_like(x[ix_head])
|
|
elif func == np.cumprod:
|
|
init = np.ones_like(x[ix_head])
|
|
else:
|
|
raise ValueError("Unknown scan function.")
|
|
x = np.concatenate([init, func(x[ix_init], axis)], axis=axis)
|
|
else:
|
|
x = func(x, axis=axis)
|
|
|
|
if reverse:
|
|
x = numpy_reverse(x, axis)
|
|
return x
|
|
|
|
|
|
class CumsumTest(xla_test.XLATestCase):
|
|
|
|
valid_dtypes = [np.float32, np.int32]
|
|
|
|
def axis_dtypes(self):
|
|
return set(self.int_types).intersection([np.int32, np.int64])
|
|
|
|
def _compare(self, x, axis, exclusive, reverse):
|
|
np_out = handle_options(np.cumsum, x, axis, exclusive, reverse)
|
|
with self.session(), self.test_scope():
|
|
p = array_ops.placeholder(x.dtype)
|
|
tf_out = math_ops.cumsum(p, axis, exclusive, reverse).eval(
|
|
feed_dict={p: x})
|
|
|
|
self.assertAllClose(np_out, tf_out)
|
|
|
|
def _compareAll(self, x, axis):
|
|
for exclusive in [True, False]:
|
|
for reverse in [True, False]:
|
|
self._compare(x, axis, exclusive, reverse)
|
|
|
|
def testEmpty(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.zeros([0]).astype(dtype)
|
|
for axis in (-1, 0):
|
|
self._compareAll(x, axis)
|
|
|
|
def testAxisType(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 6).reshape([5]).astype(dtype)
|
|
for axis_dtype in self.axis_dtypes():
|
|
with self.session(), self.test_scope():
|
|
p = array_ops.placeholder(x.dtype)
|
|
axis = constant_op.constant(0, axis_dtype)
|
|
math_ops.cumsum(p, axis).eval(feed_dict={p: x})
|
|
|
|
def test1D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 6).reshape([5]).astype(dtype)
|
|
for axis in (-1, 0):
|
|
self._compareAll(x, axis)
|
|
|
|
def test2D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(0, 10).reshape([2, 5]).astype(dtype)
|
|
for axis in (-2, -1, 0, 1):
|
|
self._compareAll(x, axis)
|
|
|
|
def test3D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(0, 20).reshape([2, 2, 5]).astype(dtype)
|
|
for axis in (-3, -2, -1, 0, 1, 2):
|
|
self._compareAll(x, axis)
|
|
|
|
def test6D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 145).reshape([2, 2, 3, 3, 2, 2]).astype(dtype)
|
|
for axis in range(-6, 6, 3):
|
|
self._compareAll(x, axis)
|
|
|
|
@test_util.disable_mlir_bridge("Error handling")
|
|
def testInvalidAxis(self):
|
|
x = np.arange(0, 10).reshape([2, 5]).astype(np.float32)
|
|
with self.session(), self.test_scope():
|
|
input_tensor = ops.convert_to_tensor(x)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
|
|
math_ops.cumsum(input_tensor, -3).eval()
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
|
|
math_ops.cumsum(input_tensor, 2).eval()
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "axis must be a scalar" in str(e)):
|
|
math_ops.cumsum(input_tensor, [0]).eval()
|
|
|
|
|
|
class CumprodTest(xla_test.XLATestCase):
|
|
|
|
valid_dtypes = [np.float32, np.int32]
|
|
|
|
def axis_dtypes(self):
|
|
return set(self.int_types).intersection([np.int32, np.int64])
|
|
|
|
def _compare(self, x, axis, exclusive, reverse):
|
|
np_out = handle_options(np.cumprod, x, axis, exclusive, reverse)
|
|
with self.session(), self.test_scope():
|
|
p = array_ops.placeholder(x.dtype)
|
|
prod = math_ops.cumprod(p, axis, exclusive, reverse)
|
|
tf_out = prod.eval(feed_dict={p: x})
|
|
|
|
self.assertAllClose(np_out, tf_out)
|
|
|
|
def _compareAll(self, x, axis):
|
|
for exclusive in [True, False]:
|
|
for reverse in [True, False]:
|
|
self._compare(x, axis, exclusive, reverse)
|
|
|
|
def testEmpty(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.zeros([0]).astype(dtype)
|
|
for axis in (-1, 0):
|
|
self._compareAll(x, axis)
|
|
|
|
def testAxisType(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 6).reshape([5]).astype(dtype)
|
|
for axis_dtype in self.axis_dtypes():
|
|
with self.session(), self.test_scope():
|
|
p = array_ops.placeholder(x.dtype)
|
|
axis = constant_op.constant(0, axis_dtype)
|
|
math_ops.cumprod(x, axis).eval(feed_dict={p: x})
|
|
|
|
def test1D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 6).reshape([5]).astype(dtype)
|
|
for axis in (-1, 0):
|
|
self._compareAll(x, axis)
|
|
|
|
def test2D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 11).reshape([2, 5]).astype(dtype)
|
|
for axis in (-2, -1, 0, 1):
|
|
self._compareAll(x, axis)
|
|
|
|
def test3D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 21).reshape([2, 2, 5]).astype(dtype)
|
|
for axis in (-3, -2, -1, 0, 1, 2):
|
|
self._compareAll(x, axis)
|
|
|
|
def test6D(self):
|
|
for dtype in self.valid_dtypes:
|
|
x = np.arange(1, 145).reshape([2, 2, 3, 3, 2, 2]).astype(dtype)
|
|
for axis in range(-6, 6, 3):
|
|
self._compareAll(x, axis)
|
|
|
|
@test_util.disable_mlir_bridge("Error handling")
|
|
def testInvalidAxis(self):
|
|
x = np.arange(0, 10).reshape([2, 5]).astype(np.float32)
|
|
with self.session(), self.test_scope():
|
|
input_tensor = ops.convert_to_tensor(x)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
|
|
math_ops.cumprod(input_tensor, -3).eval()
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
|
|
math_ops.cumprod(input_tensor, 2).eval()
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
lambda e: "axis must be a scalar" in str(e)):
|
|
math_ops.cumprod(input_tensor, [0]).eval()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|