This is mostly the result of an internal cleanup and formatting pass. PiperOrigin-RevId: 286318018 Change-Id: I8f9e2f7519070035da73f9f24d2fc90864abc51b
105 lines
4.1 KiB
Python
105 lines
4.1 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for quantized operations."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.compiler.tf2xla.python import xla
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import bitwise_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
class QuantizedOpsTest(xla_test.XLATestCase):
|
|
|
|
# Verify that quantized types can be clustered by XLA.
|
|
def testQuantizedTypeRoundtrip(self):
|
|
with self.session() as session:
|
|
for dtype in self.quantized_tf_types:
|
|
in_values = np.array([1, 2, 3, 4, 5, 6])
|
|
expected = [[1, 2], [3, 4], [5, 6]]
|
|
with self.test_scope():
|
|
p = array_ops.placeholder(dtype=dtypes.int32)
|
|
x = math_ops.cast(p, dtype)
|
|
x = array_ops.reshape(x, [3, 2])
|
|
|
|
value = session.run(x, {p: in_values})
|
|
self.assertAllEqual(value, expected)
|
|
|
|
|
|
class DequantizedOpsTest(xla_test.XLATestCase):
|
|
|
|
def pack_uint8_r2_to_uint32(self, test_input):
|
|
num_rows, num_columns = test_input.get_shape().as_list()
|
|
num_output_columns = int(math.ceil(num_columns / 4.0))
|
|
padding_input = array_ops.pad(
|
|
math_ops.cast(test_input, dtype=dtypes.uint8),
|
|
constant_op.constant([[
|
|
0,
|
|
0,
|
|
], [0, num_output_columns * 4 - num_columns]]))
|
|
output = array_ops.zeros([num_rows, num_output_columns],
|
|
dtype=dtypes.uint32)
|
|
num_elements_per_pack = 4
|
|
shift_bits = 8
|
|
|
|
iota_r1 = math_ops.range(num_output_columns * num_elements_per_pack)
|
|
|
|
for p in range(num_elements_per_pack):
|
|
selected_index = math_ops.equal(
|
|
math_ops.mod(iota_r1, num_elements_per_pack), p)
|
|
gather_index = array_ops.boolean_mask(iota_r1, selected_index)
|
|
gathered_input = array_ops.gather(padding_input, gather_index, axis=1)
|
|
total_shift_bits = shift_bits * (num_elements_per_pack - p - 1)
|
|
left_shift_input = bitwise_ops.left_shift(
|
|
math_ops.cast(gathered_input, dtype=dtypes.uint32), total_shift_bits)
|
|
output = bitwise_ops.bitwise_or(output, left_shift_input)
|
|
return output
|
|
|
|
def testDequantizeQuint8(self):
|
|
num_rows = 100
|
|
num_columns = 3547
|
|
random_input = np.random.normal(128.0, 10.0, [num_rows, num_columns])
|
|
with self.session() as session:
|
|
with ops.device("CPU"):
|
|
test_input = ops.convert_to_tensor(random_input, dtype=dtypes.float32)
|
|
transposed_input = array_ops.transpose(test_input, [1, 0])
|
|
quantized_input = array_ops.quantize(transposed_input, 0.0, 255.0,
|
|
dtypes.quint8)
|
|
packed_input = self.pack_uint8_r2_to_uint32(quantized_input.output)
|
|
with self.test_scope():
|
|
transposed_quantized_output = xla.dequantize(packed_input, 0.0, 255.0,
|
|
"MIN_COMBINED", True)
|
|
quantized_output = array_ops.slice(transposed_quantized_output, [0, 0],
|
|
[num_rows, num_columns])
|
|
|
|
value = session.run(quantized_output)
|
|
self.assertAllClose(value, random_input, 1.0)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|