This fixes some common incompatibilities with eager mode execution. PiperOrigin-RevId: 319258451 Change-Id: I93c66eb3b8c75f75fd9c1deb9526fbd937b93805
157 lines
6.3 KiB
Python
157 lines
6.3 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Proximal Gradient Descent optimizer."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.ops import resource_variable_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.training import gradient_descent
|
|
from tensorflow.python.training import proximal_gradient_descent
|
|
|
|
|
|
class ProximalGradientDescentOptimizerTest(xla_test.XLATestCase):
|
|
|
|
def testResourceProximalGradientDescentwithoutRegularization(self):
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([0.0, 0.0])
|
|
var1 = resource_variable_ops.ResourceVariable([0.0, 0.0])
|
|
grads0 = constant_op.constant([0.1, 0.2])
|
|
grads1 = constant_op.constant([0.01, 0.02])
|
|
opt = proximal_gradient_descent.ProximalGradientDescentOptimizer(
|
|
3.0, l1_regularization_strength=0.0, l2_regularization_strength=0.0)
|
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var1))
|
|
|
|
# Run 3 steps Proximal Gradient Descent.
|
|
for _ in range(3):
|
|
update.run()
|
|
|
|
self.assertAllClose(np.array([-0.9, -1.8]), self.evaluate(var0))
|
|
self.assertAllClose(np.array([-0.09, -0.18]), self.evaluate(var1))
|
|
|
|
def testProximalGradientDescentwithoutRegularization2(self):
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0])
|
|
var1 = resource_variable_ops.ResourceVariable([4.0, 3.0])
|
|
grads0 = constant_op.constant([0.1, 0.2])
|
|
grads1 = constant_op.constant([0.01, 0.02])
|
|
|
|
opt = proximal_gradient_descent.ProximalGradientDescentOptimizer(
|
|
3.0, l1_regularization_strength=0.0, l2_regularization_strength=0.0)
|
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([4.0, 3.0], self.evaluate(var1))
|
|
|
|
# Run 3 steps Proximal Gradient Descent
|
|
for _ in range(3):
|
|
update.run()
|
|
|
|
self.assertAllClose(np.array([0.1, 0.2]), self.evaluate(var0))
|
|
self.assertAllClose(np.array([3.91, 2.82]), self.evaluate(var1))
|
|
|
|
def testProximalGradientDescentWithL1(self):
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0])
|
|
var1 = resource_variable_ops.ResourceVariable([4.0, 3.0])
|
|
grads0 = constant_op.constant([0.1, 0.2])
|
|
grads1 = constant_op.constant([0.01, 0.02])
|
|
|
|
opt = proximal_gradient_descent.ProximalGradientDescentOptimizer(
|
|
3.0, l1_regularization_strength=0.001, l2_regularization_strength=0.0)
|
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([4.0, 3.0], self.evaluate(var1))
|
|
|
|
# Run 10 steps proximal gradient descent.
|
|
for _ in range(10):
|
|
update.run()
|
|
|
|
self.assertAllClose(np.array([-1.988, -3.988001]), self.evaluate(var0))
|
|
self.assertAllClose(np.array([3.67, 2.37]), self.evaluate(var1))
|
|
|
|
def testProximalGradientDescentWithL1_L2(self):
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0])
|
|
var1 = resource_variable_ops.ResourceVariable([4.0, 3.0])
|
|
grads0 = constant_op.constant([0.1, 0.2])
|
|
grads1 = constant_op.constant([0.01, 0.02])
|
|
|
|
opt = proximal_gradient_descent.ProximalGradientDescentOptimizer(
|
|
3.0, l1_regularization_strength=0.001, l2_regularization_strength=2.0)
|
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([4.0, 3.0], self.evaluate(var1))
|
|
|
|
# Run 10 steps Proximal Gradient Descent
|
|
for _ in range(10):
|
|
update.run()
|
|
|
|
self.assertAllClose(np.array([-0.0495, -0.0995]), self.evaluate(var0))
|
|
self.assertAllClose(np.array([-0.0045, -0.0095]), self.evaluate(var1))
|
|
|
|
def applyOptimizer(self, opt, steps=5):
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0])
|
|
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0])
|
|
grads0 = constant_op.constant([0.1, 0.2])
|
|
grads1 = constant_op.constant([0.01, 0.02])
|
|
|
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
|
|
# Run ProximalAdagrad for a few steps
|
|
for _ in range(steps):
|
|
update.run()
|
|
|
|
return self.evaluate(var0), self.evaluate(var1)
|
|
|
|
def testEquivGradientDescentwithoutRegularization(self):
|
|
with self.session(), self.test_scope():
|
|
val0, val1 = self.applyOptimizer(
|
|
proximal_gradient_descent.ProximalGradientDescentOptimizer(
|
|
3.0,
|
|
l1_regularization_strength=0.0,
|
|
l2_regularization_strength=0.0))
|
|
|
|
with self.session(), self.test_scope():
|
|
val2, val3 = self.applyOptimizer(
|
|
gradient_descent.GradientDescentOptimizer(3.0))
|
|
|
|
self.assertAllClose(val0, val2)
|
|
self.assertAllClose(val1, val3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|